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Abstract. We introduce conversion to the stochastic process known as chase-

escape in an effort to model aspects of inflammatory damage from multiple

sclerosis. We prove monotonicity results for aggregate damage for the model
on the positive integers, trees, stars, and the complete graph. Additionally, we

establish the existence and asymptotic order of a phase transition on bounded

degree graphs with a non-trivial site percolation threshold.

1. Introduction

Multiple sclerosis (MS) is a chronic disease characterized by lesions of damaged
white matter in the central nervous system (CNS). Roughly speaking, MS lesions
are formed when inflammatory T-cells recruit macrophages and B-cells to attack
myelin in the CNS. The process is eventually suppressed and halted by regulatory
T-cells, often leaving behind a lesion of permanently damaged CNS tissue [7, 18].
A prominent issue with studying MS is that it is extremely difficult to obtain
dynamical information from patients or even animal models [16].

Mathematical models have the potential to provide unique insights [29]. In
their survey article, Weatherly et al. describe various MS modeling attempts [29].
Lombardo et al. introduced an ordinary differential equations (ODE) model for the
interactions among macrophages, chemoattractants and destroyed oligodendrocytes
[19]. Kotelnikova et al. introduced a different ODE model describing interactions
among axons and macrophages [16]. They showed that their model can be adjusted
to match different disease courses in MS patients. In [23], Moise and Avner de-
veloped a more comprehensive model of lesion formation. It involved a complex
system of differential equations involving dozens of agents and a three-dimensional
space variable. Their model exhibited quantitative agreement with clinical data
that measured total lesion volume in MS patients [5, 20]. Travaglini recently de-
veloped a similar reaction-diffusion equation based approach [22]. Schoonheim et
al. proposed a network-based approach to describe MS dynamics and postulated
that disease impairment heightens with “network collapse” i.e., when important
connective regions accrue too much damage [25].

The aforementioned models are deterministic. However, lesion formation appears
to be partly driven by local random interactions [19]. Stochastic spatial models
for remyelination in the CNS were proposed in [11, 28]. Kim et al. introduced a
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programmed cell death model on random networks [14] that was later applied to
MS lesion formation [27, 21]. Their simulation results suggested that preemptively
killing cells through a process called apoptosis can limit total damage.

We model the interplay between inflammatory T-cells and regulatory T-cells by
generalizing a stochastic growth model known as chase-escape to include sponta-
neous conversion to account for the arrival of regulatory cells. This line of inquiry
aligns with recent experimental gene therapies to treat MS by boosting the pro-
duction of regulatory T-cells [12]. The two questions we seek to address are:

(1) Is CNS tissue damage monotone in the inflammatory and suppression rates?
(2) Does tissue damage exhibit a phase transition?

Question (1) is not apriori obvious, since rapid inflammation might trigger more
vigorous suppression, resulting in less damage as seen in the model from [27]. The
basic idea of Question (2) is characterizing conditions that allow lesions to reach
macroscopic size.

Since we approach these questions with full rigor, our model is a dramatic over-
simplification. Nonetheless, our inquiry lies at the theoretical forefront of stochastic
growth models. Our primary aim is to advance theoretical tools that may one day
be sophisticated enough to capture more salient features of MS.

1.1. Model definition. In our model, inflammatory r-particles “escape” to and
damage healthy w-sites while being “chased” and suppressed by regulatory b-
particles. We will refer to sites with r- or b-particles as red or blue, respectively and
healthy w-sites as white. Spontaneous “conversion” of red to blue sites represents
the arrival of regulatory cells that halt inflammation. Thus, red sites represent cells
with active inflammation, and blue sites represent damaged cells at which there is
no longer inflammation. To distinguish between the two mechanisms by which a
blue particle can occupy a site, either by blue spreading to a site through chasing
a red particle or by a red particle converting to blue, we will sometimes call the
former chase or predation and the latter we will refer to as conversion.

Formally, chase-escape with conversion takes place on a locally finite graph G in
which vertices are in one of the three states {w, r, b}. Adjacent vertices in states
(r, w) transition to (r, r) according to independent Poisson processes with rate λ.
Each vertex in state r transitions to state b according to an independent Poisson
process with rate α. Adjacent (b, r) vertices transition to (b, b) according to inde-
pendent rate 1 Poisson processes. The standard initial configuration has the root
vertex x0 in state r and all other vertices in state w. See Figure 1 for a visual sum-
mary of the dynamics and Figure 2 for some examples of the initial configuration
on various graphs. Note that the process is well-defined on any locally finite graph
since the memoryless property of Poisson processes allows us to update the always
finite configuration of red and blue sites in a Markovian manner.

The special case α = 0 corresponds to the well-studied chase-escape model in-
troduced by ecologists Keeling, Rand, and Wilson [13, 24] to study parasite-host
relations. Further work has reinterpreted the dynamics as models for: predator-
prey systems, rumor scotching, infection spread, and malware repair in a device
network [4, 3, 6, 10, 9]. Note that for chase-escape, both red and blue sites must
be present in the initial configuration, and this is usually implemented by adding
an additional vertex in state b attached to x0. Also note that we could add a third
parameter β to modify the spreading rate of blue to obtain a larger class of models.
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Figure 1. Chase-escape with conversion dynamics.

For example, setting β = 0 would yield the classical SIR model of infection spread
[8]. We believe our results still hold for general β > 0. However, since conversion
is the main novelty, we opt for a simpler presentation with β fixed at 1.

For chase-escape with conversion on G with site x0 initially in state r, let X =
X(G, x0, λ, α) be the number of sites in state b when the process eventually fixates.
We adopt the convention that X = ∞ if the process never fixates. Much of the
chase-escape literature has focused on the critical red spreading rate when G is an
infinite graph. The analogue for chase-escape with conversion is

λc(α) = λc(α,G, x0) := sup{λ : Pλ,α(X < ∞) = 1},(1)

above which X is infinite with positive probability [9]. This definition could be
adapted to growing sequences of finite graphs as was done for chase-escape in [2].

Another intriguing feature of chase-escape is the apparent difficulty to prove
monotonicity in λ. Recall that a nonnegative random variable X ′ is stochastically
smaller than another nonnegative random variable X (denoted X ′ ⪯ X) if and only
if there is a coupling such that X ′ ≤ X almost surely, or equivalently P(X ′ ≥ a) ≤
P(X ≥ a) for all a ≥ 0. When G contains cycles, it remains an open problem in
most natural settings (for example Z2 [17]) to prove stochastic monotonicity of X
in λ. Although faster spread of red particles is believed to cause red to reach more
sites, there is the offsetting effect that more red sites means more opportunities for
blue to spread. A similar effect happens with conversion. Faster conversion should
reduce X, but more red conversion means fewer red sites for blue to chase.

1.2. Results. We are interested in whether or not X is monotone in λ and α.
When α = 0, it is straightforward to see that X is monotone in λ on trees. However,
when α > 0, the question of monotonicity in λ is less clear, even on trees, because
speeding up red introduces more conversion opportunities.

Let N denote the positive integers 1, 2, . . . with root x0 = 1, Sn denote the star
graph with root vertex x0 attached to n leaf vertices, T denote a locally finite tree
rooted at x0, and Kn denote the complete graph on n vertices, labeled 1, 2, . . . , n
with root x0 = 1. See Figure 2. Note that N and Sn are special cases of tree graphs.

We say that the number of damaged sites in chase-escape with conversion, X,
is monotone in λ if X(G, x0, λ

′, α) ⪯ X(G, x0, λ, α) for λ
′ ≤ λ, and X is monotone

in α if X(G, x0, λ, α
′) ⪯ X(G, x0, λ, α) for α′ ≥ α. We say that X is monotone

in n for the process on Sn if X(Sn′ , λ, α, x0) ⪯ X(Sn, λ, α, x0) for all n′ ≤ n, and
similarly for monotonicity in n for the process on Kn.

Theorem 1. The number of damaged sites X in chase-escape with conversion:

(i) Is monotone in α for T ,N, Sn, and Kn.
(ii) Is monotone in λ for N, Sn, and Kn.
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Figure 2. From left to right: The positive integers 1, . . . , 5, a tree
with 12 vertices, the star graph S20, and the complete graph K16.
The root x0 is shaded red in each example.

(iii) Is monotone in n for Sn and Kn.

We also prove that λc(α), defined at (1), is non-trivial and pin down its lead-
ing order on infinite graphs with bounded degree and non-trivial site percolation
threshold. Let G be an infinite graph with root x0. Recall that in Bernoulli site
percolation, each vertex is open independently with probability p and otherwise
closed. The percolation critical value is

pc = pc(G, x0) := inf{p : Pp(x0 ∈ an infinite open cluster) > 0}.
Here a cluster is a maximal component of open vertices connected to one another
by at least one edge. We prove that there is a non-trivial phase transition whenever
pc is non-trivial and, in doing so, obtain the first-order growth of λc(α). Note that
for a non-negative function f we write f(x) = Θ(x) if there exist constants c, C > 0
such that c < f(x)/x < C for all large x.

Theorem 2. Fix α > 0. Suppose that G is an infinite graph with maximum degree
3 ≤ d < ∞ and pc(G, x0) < 1. It holds that

α

d− 2
≤ λc(α) ≤

d+ α

1− pc(G, x0)1/d
.

Thus, λc(α) = Θ(α).

Examples of graphs for which Theorem 2 applies are infinite lattices and regular
trees.

1.3. Further questions. We conjecture that X is monotone in λ on trees and
Zd. It would be worthwhile to study chase-escape with conversion on finite random
networks whose topologies more closely resemble neuron structures, such as Erdős-
Rényi and random spatial graphs [2, 27]. A central question in chase-escape on Z2

is proving that λc(0) < 1 [26, 9], or, even better, that λc(0) < 1/2 as conjectured in
[17]. With the introduction of conversion, one could seek estimates on λc(α). For
example, does λc(α)/α → C for some C > 0 as α → ∞? Alternatively, it would be
interesting to investigate the dual critical value αc(λ) := inf{α : Pλ,α(X < ∞) = 1}.

In Figure 3, we provide simulation estimates of λc(1) ≈ 1.975 and αc(1) ≈ 0.275
for the process on Z2. The curves in the figure also support our monotonicity on
Zd conjecture. See Figure 4 for snapshots of the process on Z2. Another interesting
variation would allow for an increasing conversion rate α(t) that models increased
immune response over time.

A future project is to develop a data set using MRI data consisting of the spatial
structure of individual MS lesions. Since MRI data is broken down into cubic
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millimeter boxes (known as voxels), storing a lesion’s structure in Z3 would be
natural. Such data could be used as benchmarks to compare models against. To
our knowledge, none of the previously mentioned MS models have performed such
benchmarking. The closest analogue is [23], which compared their models to studies
that measured the total volume of lesions in participants [20], but this was non-
spatial data.

1.4. Proof Overview. Theorem 1 is proven via explicit couplings that allow us
to compare how X is sampled for different parameter choices. Seemingly obvious
monotonicity can be difficult to prove. The proper framing is needed to obtain
Theorem 1 and varies from graph to graph. For example, we find occasion to
sample X in a non-Markovian manner using edge passage times (for T and part of
the proof for N), in a continuous time Markovian manner (for Kn), in a mixture of
these two viewpoints for Sn, and as a discrete time Markov process (for part of the
proof for N).

For N, we discretize the process by generalizing a jump chain construction from
[1]. Conversion introduces new challenges. For example, the initial height of the
jump chain is now random. To couple the starting locations of different jump
chains, we use the passage time construction for trees. In the coupling, we must run
the monotonically smaller process longer than its counterpart. Once the starting
heights are coupled, comparing the evolution for different parameters is also more
subtle due to conversion. Maintaining a working coupling requires the introduction
of neutral flat steps to the jump chains.

Monotonicity for the star graph uses a pure death process along with a queue
to assign the times for blue to reach the root from a given leaf. For Kn we use the
framework introduced in [15] that reduces the dynamics to studying birth and death
processes. Conversion introduces constant immigration to the previously pure birth
process. The lower bound on λc(α) in Theorem 2 is proven using a first-moment
bound that relies on red being unlikely to survive along a given path [2]. The upper
bound uses a coupling with site-percolation that was introduced in [10].

1.5. Organization. We prove Theorem 1 by graph: Section 2 handles trees, Sec-
tion 3 the positive integers, Section 4 stars, and Section 5 the complete graph.
Section 6 proves Theorem 2.

2. Proof of Theorem 1: Trees

Fix a tree T with root x0 as well as a value of λ. Let α′ ≥ α. We must prove that
X ′ := X(T , x0, α

′, λ) ⪯ X(T , x0, α, λ) =: X. We will proceed by constructing the
chase-escape with conversion process by assigning passage times to directed edges
and vertices, then explaining how these times can be used to deduce the value of
X i.e., that X is measurable with respect to these passage times. Specifically, we
may partition X by

X =

∞∑
n=0

|L(n)| = 1 +

∞∑
n=0

∑
x∈L(n)

|I(x)|

where L(n) denotes the set of vertices ever colored red at level n and I(x) denotes
the set of children of x ever colored red. Note that given the tree structure, L(n+
1) =

⋃
x∈L(n) I(x). We will inductively define L(n) and I(x) using passage times.



6 CHASE-ESCAPE WITH CONVERSION AS A MULTIPLE SCLEROSIS LESION MODEL

1.95 1.96 1.97 1.98 1.99 2.00

λ

0.0

0.2

0.4

0.6

0.8

1.0

E
sc

ap
e

P
ro

b
ab

ili
ty

L = 250

L = 500

L = 1000

L = 2000

L = 4000

0.260 0.265 0.270 0.275 0.280 0.285 0.290

α

0.0

0.2

0.4

0.6

0.8

1.0

E
sc

ap
e

P
ro

b
ab

ili
ty

L = 250

L = 500

L = 1000

L = 2000

L = 4000

Figure 3. Simulations suggesting λc(1) ≈ 1.975 (top) and
αc(1) ≈ 0.275 (bottom) for chase-escape with conversion on Z2.
The process was run on two-dimensional tori with side lengths
L = 250, 500, 1000, 2000, 4000, initializing all vertices on the bot-
tom edge as blue and those vertices one level above as red. The
curves interpolate between empirical estimates of the “Escape
Probability”, the probability that red reaches the top edge of the
torus, averaged over 50,000 samples for each value of λ and α indi-
cated by open circles on the curves. The intersection of the curves
for the different values of L should be close to the true critical
value, as in [17]. Note that we also see what looks like monotonic-
ity of the escape probability in λ and α.
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Figure 4. Sample realizations of the (still evolving) damaged re-
gion on a 250× 250 box started with the central vertex in red and
all other vertices in white. Sites that turned blue from conversion
are colored yellow and those that turned blue from predation are
colored blue. We set α = 1 in both with λ = 1.976 (top) and λ = 3
(bottom).
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Figure 5. Directed edges representing the passage times

R⃗ŷ,y, B⃗ŷ,y, B̂y,ŷ, and Cy. These are labeled for ŷ = 0 and are
assigned similarly at the other vertices. On a tree, X is measur-
able with respect to these passage times.

It then suffices to show that I ′(x) ⊂ I(x) for all x ∈ T where I ′(x) is defined
analogously to I(x) for the coupled process with parameter α′ ≥ α.

Throughout the paper, we let Exp(µ) denote the exponential distribution with
density function µx−µx for x ≥ 0. We will use the notation Y ∼ Exp(µ) to denote
that Y is a random variable with this distribution. We proceed in two steps: first,
describing the setup and then proving monotonicity.

2.1. Setup. Call ŷ ∈ T the parent of y if ŷ shares an edge with y and lies on the
geodesic path of edges connecting y to the root x0. In this case, call y a child of ŷ.
The progeny of y consists of all children of y, their children’s children, and so on.
Given x ∈ T , define the subtree T (x) that includes vertices whose geodesic path
to x excludes x̂, i.e., T (x) includes x and all generations of its descendants. For
each vertex y ∈ T (x), let (x = x1, x2, . . . , xn = y) be the geodesic path of vertices
between x and y. This path is simply (x) when x = y and (x, y) when x and y are
adjacent.

To each edge Eŷ,y we assign (R⃗ŷ,y, B⃗ŷ,y, B̂ŷ,y, Cy) consisting of four independent
exponentially distributed random variables, which are also independent from those

assigned to other edges. The values R⃗ŷ,y ∼ Exp(λ) and B⃗ŷ,y ∼ Exp(1) give the
time it takes for red and blue, respectively, to spread from ŷ to y. The value
B̂ŷ,y ∼ Exp(1) represents the time it takes for blue to spread from y to ŷ. Note that
the tree structure ensures that red cannot spread from y to ŷ. Lastly, Cy ∼ Exp(α)
represents the conversion time at y. See Figure 5 for visual representation of these
passage times as directed edges.

Given a vertex x and y ∈ T (x), define the infection times

(2) Tx,y :=

(
n−1∑
i=1

R⃗xi,xi+1

)
+ Cy +

(
n−1∑
i=1

B̂xn−i+1,xn−i

)
.

The times Tx,y give how long it takes for x to be infected from the conversion of
y: red spreads from x to y, the vertex y converts to blue, and then the sites along
the geodesic from y to x turn blue by predation until ultimately predating x so it
becomes blue. For each vertex x, this sequence of events can occur at most once,
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for some y in the progeny T (x) (note that Tx,y considers only the conversion of
vertex y). Accordingly, we define:

Tx = min{Tx,y : y ∈ T (x)}.
Let Sx denote the survival time of x, that is, the time at which x first turns blue.

We use the conventions that bold letters are in the units of global time as the process
runs and that Sx is infinite if x never turns blue. Letting (x0, x1, x2, . . . , xn = x)
be the geodesic path of vertices from x0 to x, define

Rx := R⃗x0,x1 + · · ·+ R⃗xn−1,xn

to be the time for red to reach x from x0. We say that a vertex x ∈ T is of
generation n if the geodesic path from x0 to x contains n+ 1 vertices.

For generation 0, we have L(0) = {x0}. The root x0 can only turn blue because
one of its descendants (including itself) converted to blue and spread to x0. Thus,
we have

Sx0
:= Tx0

.

Letting C(x) denote the child vertices connected to the vertex x, the children of the
root x0 that are ever in state red are exactly those who turned red before x0 turns
blue, i.e.,

I(x0) := {x ∈ C(x0) : R⃗x0,x ≤ Sx0
}.(3)

Given L(0), . . . ,L(n), Sx and I(x) for each x ∈
⋃

k≤n−1 L(k), let us describe

how to determine Sx and I(x) for each x ∈ L(n) and thus L(n+ 1).
Fix x ∈ L(n) and consider its parent x̂ ∈ L(n−1). Note that x turns blue either

by predation from x̂ or by infection from the conversion of one of its descendants
(including itself). Thus, the survival time of x is given by

Sx = (Rx + Tx) ∧ (Sx̂ + B⃗x̂,x).

Thus, the set of children that x converts to red is given by

I(x) := {y ∈ C(x) : Ry ≤ Sx}(4)

and

L(n+ 1) =
⋃

x∈L(n)

I(x).

We obtain a partition {x0}∪
⋃∞

n=0

⋃
x∈L(n) I(x) of vertices that are ever colored

red. Using the memoryless property of the exponential distribution, this yields the
following characterization of X

X = 1 +

∞∑
n=0

∑
x∈L(n)

|I(x)|.

2.2. Proof of monotonicity. Fix α′ ≥ α, and define the analogous spreading

times with the following couplings: R⃗′
ŷ,y = R⃗ŷ,y, B⃗

′
ŷ,y = B⃗ŷ,y, B̂

′
y,ŷ = B̂y,ŷ, and

C ′
y ≤ Cy with C ′

y ∼ Exp(α′). Using these coupled passage times and defining I ′(x)
and L′(n) analogously, we may sample X ′ by taking

X ′ = 1 +

∞∑
n=0

∑
x∈L′(n)

|I ′(x)|.
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Using the convention that I(x) = ∅ if x /∈
⋃

n L(n), it suffices to show that I ′(x) ⊆
I(x) for all x ∈ T . We will do this by induction. For the base case, we show that
I ′(x0) ⊆ I(x0). Recall that the red and blue passage times are coupled to be equal.
Hence, the first and third terms in (2) are the same in both systems:

n−1∑
i=1

R⃗xi,xi+1
=

n−1∑
i=1

R⃗′
xi,xi+1

,

n−1∑
i=1

B̂xn−i+1,xn−i =

n−1∑
i=1

B̂′
xn−i+1,xn−i

.

C ′
y ≤ Cy implies T ′

x,y ≤ Tx,y for all y ∈ T (x) and therefore T ′
x ≤ Tx for all x ∈ T .

Thus, S′
x0

≤ Sx0
. Note that Rx = R′

x for all x ∈ T , so this ordering of the survival
times imposes a more stringent condition at (3) for inclusion in I ′(x0) than in
I(x0). Thus, I ′(x0) ⊆ I(x0).

Suppose we have I ′(v) ⊂ I(v) for every v ∈ T of generation 0 to n. For any
x ∈ T of generation n+1, its parent x̂ is of generation n. The inclusion I ′(x) ⊂ I(x)
trivially holds in the following scenarios:

• x /∈ I(x̂): The induction hypothesis implies x /∈ I ′(x̂) so that I(x) =
I ′(x) = ∅.

• x /∈ I ′(x̂): Then I ′(x) = ∅ ⊂ I(x).
Thus it remains to consider when x ∈ I(x̂) ∩ I ′(x̂). In this case, both I(x̂) and
I ′(x̂) are nonempty and so Sx̂,S

′
x̂ < ∞ almost surely. Recall that

Sx = (Rx + Tx) ∧ (Sx̂ + B⃗x̂,x),

S′
x = (R′

x + T ′
x) ∧ (S′

x̂ + B⃗′
x̂,x).

Since we have the equalities Rx = R′
x, B⃗x̂,x = B⃗′

x̂,x, and the inequalities T ′
x ≤ Tx,

S′
x̂ ≤ Sx̂, we can see that S′

x ≤ Sx. Therefore, the condition in (4) is more stringent
with S′

x than with Sx and so I ′(x) ⊆ I(x) as desired.
This proves that I ′(x) ⊆ I(x) for all x ∈ T and therefore that X ′ ⪯ X as

desired.

Remark 3. We have proven the stronger statement that the set of vertices {x0} ∪⋃
x∈T I(x) ever colored red is stochastically decreasing in α.

Remark 4. This construction of X highlights the difficulty in proving monotonicity

in λ. Increasing λ, reduces the R⃗x,y passage times, and as a result, reduces both
Rx and Sx. Thus, both sides are reduced in the comparison in (4).

Remark 5. This argument does not generalize to graphs with cycles because the
comparisons needed to determine which vertices are ever colored red are more com-
plicated.

3. Proof of Theorem 1: The positive integers

As observed in [1], a useful quantity for analyzing variants of the chase-escape
process on the positive integers N is the jump chain (Yt)t∈N. This discrete-time
process tracks the number of (necessarily contiguous) red sites in front of the right-
most blue. For example, the jump chain corresponding to this configuration of red
and blue on N
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Yt

would have height 3. If, at the next transition, the configuration changed to

Yt+1

the jump chain would then have height 1. We emphasize that the values t = 0, 1, . . .
are discrete and correspond to the (random) times at which the configuration
changes. See [1] for a more formal description in the case of chase-escape.

For our purposes, an active jump chain is then described by a lattice path that:

• Starts at (0, Y0) for some Y0 ≥ 0.
• Consists of +(1, 1) up-steps and +(1,−j) down-steps for any j ≥ 1.
• Is never negative and stops upon reaching 0.

If the jump chain is at (t, k), then the next step is to (t+1, j), for j ∈ {0, 1, . . . , k−
1, k + 1}, with probabilities pk,j where

pk,k+1 =
λ

1 + λ+ αk
, pk,k−1 =

1 + α

1 + λ+ αk
,

and

pk,j =
α

1 + λ+ αk
0 ≤ j ≤ k − 2.

The first term, pk,k+1, is the probability that the rightmost red advances. The
second term, pk,k−1, is the probability that either the rightmost blue advances or
the leftmost red (in the relevant connected component) converts to blue. The third
term, pk,j , is the probability that the red at distance k − j from the rightmost red
converts to blue. Reaching 0 corresponds to the rightmost red becoming blue, thus
ending the possibility of red advancement.

The jump chain evolves until the stopping time κ = inf{t : Yt = 0} with the
convention that κ = 0 whenever Y0 = 0. Let

U(n) = #{0 < t ≤ κ : Yt = Yt−1 + 1 | Y0 = n}

be the number of up-steps by the jump chain (Yt)t∈N starting with Y0 = n.
One can start tracking the jump chain at any point from the appearance of the

first blue on. Let Nt be the site of the rightmost red at time t and Mt be the site of
the rightmost blue at time t with the convention that Nt = Mt if the rightmost non-
white site is blue, the jump chain construction yields the following characterization
of X on the positive integers N, rooted at x0 = 1.

Lemma 6. For any time t when blue is present in the system, X(N, x0, α, λ)
d
=

Nt + U(Nt −Mt).

In particular, let γ be the time of the first conversion from red to blue and denote
N := Nγ and M := Mγ , that is, M is the first site to convert to blue. Lemma 6

implies that X(N, x0, α, λ)
d
= N + U(N −M).

We will prove that X is monotone in α and λ simultaneously by coupling
the jump chains corresponding to parameter choices α ≤ α′ and λ ≥ λ′. Let
X ′ = X ′(N, x0, α

′, λ′) be sampled from the jump chain (Y ′
t )t∈N with parameters

λ′ and α′. Define N ′
t , M

′
t , and U ′ analogously for the (λ′, α′)-chase-escape with
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conversion process. We will prove the following characterization of X ′ that, in light
of Lemma 6, implies that X ′ ⪯ X.

Lemma 7. There exists γ′ such that X ′(N, x0, α
′, λ′)

d
= N ′

γ′ +U ′(N ′
γ′ −M ′

γ′) with
the relations:

(i) N ′
γ′ ⪯ N

(ii) N ′
γ′ −M ′

γ′ ⪯ N −M

(iii) U ′(n′) ⪯ U(n) for all n′ ≤ n.

Proof. We will proceed in two steps. First, we will produce a coupling that uses
the passage time construction for trees from the previous section to prove claims
(i) and (ii). The basic idea is that we take γ′ to be the time the site M becomes
blue in the (λ′, α′)-process.

In Step 2, we will proceed inductively to prove that, conditional on Y ′
t ≤ Yt, the

next step of the chain results in Y ′
t+1 ≤ Yt+1. This implies that U ′(n′) ⪯ U(n).

The second step requires a minor time distortion where sometimes only one of the
jump chains takes an up- or down-step while the other takes a flat-step. However,
this does not alter the total number of up-steps taken.

Step 1: (i) and (ii). First we will formally sample M and N used to determine
X in Lemma 6. As N is a tree graph, the passage time construction from Section 2

applies. In particular, for y ≥ 1 we sample times R⃗y,y+1, B⃗y,y+1, B̂y+1,y, and Cy.

LetR1 = 0 and, for x ≥ 2, defineRx = Rx−1+R⃗x−1,x to be the time it takes for red
to reach site x in the absence of chase and conversion. Note that Rx+Cx is the time
it takes for site x to become red, and then convert. Define γ = min{Rx+Cx : x ∈ N}
as the first conversion time. This minimum is realized at some almost surely unique
site M . We set N = max{x : Tx ≤ γ} to be the location of the rightmost red at
time γ with the convention that N = M if M is the rightmost non-white site.

For α′ ≥ α and λ′ ≤ λ, sample the edges R⃗′
y,y+1, B⃗

′
y,y+1, B

′
y+1,y, and C ′

y so that

the blue spreading times are the same and R⃗′
y,y+1 ≥ R⃗y,y+1 and C ′

y ≤ Cy. Define
R′

x analogously using these passage times. Taking M exactly as in the previous
paragraph (using the λ and α passage times), let γ′ = R′

M + C ′
M be the time at

which site M would convert to blue using the λ′ and α′ passage times. We let M ′
γ′

be the site with the rightmost blue at time γ′ in the (λ′, α′)-process. Note that
M ′

γ′ need not equal M nor the first site to turn blue in the (λ′, α′)-process; it is
possible that other sites were converted earlier, and even that some sites became
blue from predation. We let N ′

γ′ be the location of the rightmost red at time γ′

in the (λ′, α′)-process with the convention that N ′
γ′ = M ′

γ′ if M ′
γ′ is the rightmost

non-white site. See Figure 6 for a visual representation of these quantities.
To derive the relationship between these variables, we will first deal with the

case where site M is white at time γ′ in the (λ′, α′)-process, followed by the case
when M is blue at time γ′ in the (λ′, α′)-process. The two cases are represented in
the right and left panels, respectively, of Figure 6. These are the only cases, since
M cannot be red at time γ′, given that γ′ is the time that site M would convert
from red to blue.

If M is white at time γ′, then site M remains white for all time in the process
with the (λ′, α′) passage times, and a blue site strictly to the left of M is the
rightmost non-white site. Therefore, M ′

γ′ = N ′
γ′ < M ≤ N . Therefore, N ′

γ′ ≤ N

and 0 = N ′
γ′ −M ′

γ′ ≤ N −M in this case.
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M N

M ′
γ′ N ′

γ′

M N

M ′
γ′ = N ′

γ′

Figure 6. Two example realizations of chase-escape with conver-
sion in the coupling to prove (i) and (ii) in Lemma 7. In each
subfigure (left and right), the top image is the process with λ and
α at time γ, and the bottom image is the process with λ′ and α′

at time γ′. On the left, we have M ′
γ′ > M and N ′

γ′ < N . On the

right, we have M ′
γ′ = N ′

γ′ < N . In both subfigures, the claimed

relations N ′
γ′ ≤ N and N ′

γ′ −M ′
γ′ ≤ N −M hold.

Assume now that site M is blue at time γ′. In this case, M ′
γ′ ≥ M , because

M ′
γ′ is the rightmost blue site and site M is blue. Since N is the location of the

rightmost red site in the (λ, α)-process, it follows that

CM <

N−M∑
i=0

R⃗M+i,M+i+1,

that is, the time that it takes red to spread from site M to site N +1 (at rate λ) is
greater than the time it takes site M to convert to blue, at rate α. This, combined

with the passage time relations R⃗′
y,y+1 ≥ R⃗y,y+1 and C ′

y ≤ Cy, implies

γ′ = R′
M + C ′

M

≤ R′
M + CM

< R′
M +

N−M∑
i=0

R⃗M+i,M+i+1

≤ R′
M +

N−M∑
i=0

R⃗′
M+i,M+i+1

= R′
N+1.

Therefore, γ′ < R′
N+1 and so site N + 1 is white in the (λ′, α′)-process at time γ′.

This implies that N ′
γ′ ≤ N . Since M ′

γ′ ≥ M , we have moreover N ′
γ′−M ′

γ′ ≤ N−M .

This gives (i) and (ii).
Step 2: (iii). Let t ≥ 0 and suppose that Yt = y ≥ y′ = Y ′

t with λ ≥ λ′ and
α ≤ α′. We will sample the next step of these chains using the Poisson edge clocks
associated to the current chase-escape with conversion configuration on N.

Adopting the convention that an Exp(0)-distributed random variable is infinite
with probability one, sample the following random variables independently:

• τB ∼ Exp(1).
• τR ∼ Exp(λ′) and σR ∼ Exp(λ− λ′).
• τi ∼ Exp(α) for i = 1, . . . , y, and σi ∼ Exp(α′ − α) for i = 1, . . . , y′.

We then set the edge transition times:

• TB = τB = T ′
B .
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Figure 7. An example of the coupling in Step 2. The solid black
path corresponds to Yt with Y0 = 2 and the dashed path to Y ′

t

with Y ′
0 = 1. Our construction ensures Y ′

t ≤ Yt at all steps so long
as Y ′

0 ≤ Y0.

• TR = min(τR, σR) and T ′
R = τR.

• TR,i = τi for i = 1, . . . , y and T ′
R,i = min(τi, σi) for i = 1, . . . , y′.

Let
τ = min{τB , τR, σR, τ1, . . . , τy, σ1, . . . , σy′}.

Call the times TB , . . . , TR,y the Yt edge clocks. Similarly, the times T ′
B , . . . , T

′
R,y′

are the Y ′
t edge clocks.

To obtain Yt+1 and Y ′
t+1, we update the edge(s) corresponding to the edge

clock(s) equal to τ . If only one edge clock updates, then the other process takes a
flat step. We give the details of each situation:

• If τ = τB (hence τ = TB = T ′
B), then for both Yt and Y ′

t , we set the blue
vertex of their respective critical regions to predate the adjacent red and
so Yt+1 = y − 1 ≥ y′ − 1 = Y ′

t+1.
• If τ = τR (hence τ = TR = T ′

R), then both Yt and Y ′
t take a forward step

and infect their adjacent white vertices. Thus, Yt+1 = yt+1 ≥ y′t+1 = Y ′
t+1.

• If τ = σR, (hence τ = TR) then we set Yt to take a forward step and Y ′
t to

take a flat step. We have that Yt+1 = y + 1 > y′ = Y ′
t+1.

• If τ = τi for 1 ≤ i ≤ y′ (hence τ = TR,i = T ′
R,i), then for both jump chains

the ith-red vertex (counting from the rightmost red vertex in each chain as
vertex 1) converts to blue. This means that Yt+1 = i− 1 = Y ′

t+1.

• If τ = τi for y′ < i ≤ y (hence τ = TR,i) we set that the ith-red vertex
of Yt converts to blue (again counting from the right) and Y ′

t takes a flat
step (notice that we only defined T ′

R,i for i = 1, . . . , y′, so in this case, no

conversion happens in the Y ′
t chain). Hence, Yt+1 = i− 1 ≥ y′ = Y ′

t+1.

• If τ = σi for 1 ≤ i ≤ y′ (hence, τ = T ′
R,i), then we set the ith-red vertex of

Y ′
t to convert while Yt takes a flat step. Hence Yt+1 = y > i− 1 = Y ′

t+1.

See Figure 7 for an example.

Claim 8. Let Y be the total number of upward steps taken by (Yt)t∈N until reaching
0, and similarly for Y ′. It holds that Y ⪰ Y ′.

Proof. Once the flat steps are removed, this coupling gives the correct marginals
for Yt and Y ′

t conditional on the values of Y0 and Y ′
0 . Moreover, whenever Y ′

t

increases (when τ = τR), Yt is coupled to increase by the same amount. Whenever
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Yt decreases, the coupling above guarantees that the Yt chain does not fall below
Y ′
t . We also have cases when Y ′

t moves downwards and Yt stays fixed, and Yt moves
upwards with Y ′

t fixed. Because the coupling ensures that the chains remain ordered
and couples the forward steps, it is immediate that U ′

κ(n
′) ⪯ Uκ(n) whenever

n′ ≤ n. □

Recall that Lemma 6 states that X(N, x0, α, λ) = N +Uκ(N −M) and Lemma 7
that X ′ = N ′

γ′ + U ′
κ′(N ′

γ′ −M ′
γ′) with stochastic relations: N ′

γ′ ⪯ N , N ′
γ′ −M ′

γ′ ⪯
N −M , and U ′

κ′ ⪯ Uκ(n) for all n
′ ≤ n. It follows that

X ′(N, x0, α
′, λ′) = N ′

γ′ + U ′
κ′(M ′

γ′ −N ′
γ′) ⪯ N + Uκ(N −M) = X(N, x0, α, λ),

as desired. □

4. Proof of Theorem 1: Stars

For the star graph, we will return to thinking about the process in continuous
time, t ∈ [0,∞), with the exponential clocks framework. For the star graph, the
root is initially red, and red can only spread from the root. Accordingly, the number
of leaves that are ever red is equal to the number of leaves in state red or blue at
the time the root becomes blue.

In the following, we think of the spread of red from the root like a pure death
process that starts with n individuals (representing the n white nodes), and where
each one dies (here, this corresponds to becoming red) independently at rate λ. Let
σ(i) ∈ [0,∞) denote the time of the i-th death with the convention that σ(0) = 0
and σ(n+ 1) = ∞. Note that σ(i)− σ(i− 1) ∼ Exp((n− i+ 1)λ) for 1 ≤ i ≤ n.

Similarly, let σ′(i) denote the time of the i-th death in a coupled pure death
process that starts with n′ ≤ n individuals that each die at rate λ′ ≤ λ. Therefore,
σ′(i)− σ′(i− 1) ∼ Exp((n′ − i)λ′). Because n′ ≤ n and λ′ ≤ λ, for each 0 ≤ i ≤ n′,
it is clear that (n′ − i)λ′ ≤ (n− i)λ. Therefore, we couple these two processes such
that

σ′(i)− σ′(i− 1) ≥ σ(i)− σ(i− 1)

for each 0 ≤ i ≤ n′. Notice that this also implies that σ′(i+1)−σ′(k) ≥ σ(i+1)−
σ(k) for any k ≤ i ≤ n′. For α′ ≥ α, let Ti ∼ Exp(α) +Exp(1) be independent and
coupled with T ′

i ∼ Exp(α′)+Exp(1) so that T ′
i ≤ Ti. Ti is the time it takes for the

ith red leaf to convert to blue and then spread blue to the root (similarly for T ′
i ).

Additionally, let T0 ∼ Exp(α) and T ′
0 ∼ Exp(α′) be coupled so that T ′

0 ≤ T0. T0

and T ′
0 represent the time it takes the root to convert to blue.

For 0 ≤ i ≤ n, let
Mi = min

0≤k≤i
σ(k) + Tk

and analogously for M ′
i . Define

I = min{0 ≤ i ≤ n : σ(i+ 1)−Mi > 0},
I ′ = min{0 ≤ i ≤ n′ : σ′(i+ 1)−M ′

i > 0}.

We claim that X = I+1 and X ′ = I ′+1. To see this, note that the times σ(i) and
Ti can be coupled to reflect the time red spreads to the ith leaf and the time the
ith red leaf would convert the root to blue, as described above. The smallest index
I such that that σ(I + 1) > MI , equivalently σ(I + 1) − MI > 0, indicates that
the root has been colored blue (by one of the first I red leaves or by conversion)
before the (I + 1)th leaf turns red. So I gives how many leaves are at some point
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colored red and X = I + 1 to account for the root. Similar reasoning gives the
characterization of X ′ = I ′ + 1.

We may rewrite σ(i+ 1)−Mi as follows

σ(i+ 1)−Mi = σ(i+ 1)− min
0≤k≤i

(σ(k)− Tk)

= max
0≤k≤i

(σ(i+ 1)− σ(k)− Tk)(5)

Recall that from our coupling, we have that for all 0 ≤ k ≤ i

σ(i+ 1)− σ(k) ≤ σ′(i+ 1)− σ′(k),

so

σ(i+ 1)− σ(k)− Tk ≤ σ′(i+ 1)− σ′(k)− Tk.

Similarly by the coupling, because Tk ≥ T ′
k, we also have that

σ(i+ 1)− σ(k)− Tk ≤ σ′(i+ 1)− σ′(k)− T ′
k.

Therefore, for 0 ≤ i ≤ n′,

max
0≤k≤i

(σ(i+ 1)− σ(k)− Tk) ≤ max
0≤k≤i

(σ′(i+ 1)− σ′(k)− T ′
k),

which by (5) implies that

σ(i+ 1)−Mi ≤ σ′(i+ 1)−M ′
i .(6)

Suppose now that I = i with 0 ≤ i ≤ n′. Then 0 < σ(i+ 1)−Mi, and by (6)

0 < σ(i+ 1)−Mi ≤ σ′(i+ 1)−M ′
i .

which yields I ′ ≤ i = I. On the other hand, if I = i with i > n′, then I ′ ≤ n′ <
i = I. Since X = I + 1 and X ′ = I ′ + 1, this proves that X ′ ⪯ X.

Remark 9. We point out that the passage time for construction of X on trees in
Section 2 does not appear to easily give monotonicity of X in λ and n if one simply
couples the passage times for the (λ, α, n) and (λ′, α′, n′) processes in the canonical
way. Without the further coupling we give here, of assigning the conversion time
and then predation of the root dynamically, it is possible that speeding up an edge
passage time or adding a new edge could dramatically reduce X compared to X ′.

5. Proof of Theorem 1: The complete graph

As with Sn, it is more convenient to work in continuous time t ∈ [0,∞) using the
exponential clocks in the definition of chase-escape with conversion. Let (Rt)t∈N
be the number of vertices in state r at time t. Similarly, let (Bt)t∈N be the number
of blue vertices. Let Wt = n − Rt − Bt be the number of vertices in state w.
Conditional on Rt = r,Bt = b, and Wt = w = n − (r + b), we have the following
transition probabilities at the next jump time:

p+r,b =
λwr

λrw + br + αr
; p−r,b =

br + αr

λrw + br + αr
,

where p+r,b is the probability Rt increases by 1 and p−r,b is the probability Rt decreases
by one while Bt increases by 1. As observed for chase-escape on the complete graph
in [15], r is common to all summands and can thus be factored and canceled. The
common r term persists with conversion. Hence, for all 1 ≤ r ≤ n we have
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p+r,b :=
λw

λw + b+ α
; p−r,b :=

b+ α

λw + b+ α
.(7)

[15, Theorem 1.1] uses this observation to deduce that the number of sites ever
infected by red can be characterized by a simple process involving independent pure
birth and pure death processes. This is still true in chase-escape with conversion,
but with the addition of constant immigration to the birth process. We describe
these processes below.

The death process starts with n − 1 individuals, each of which die at exponen-
tial rate λ. Let Wt denote the number of individuals remaining at time t. The
birth process starts with 0 individuals who generate an additional individual at
exponential rate 1. Additionally, there is a constant immigration process where a
new individual is added at exponential rate α (that does not depend on the pop-
ulation size). Let Bt denote the number of individuals at time t. Additionally, let
σ(i) denote the time (in continuous units) of the ith jump in the death process
and ρ(i) denote the time of the ith jump in the birth process. By construction,
σ(i+1)−σ(i) ∼ Exp(λ(n−1− i)) for 0 ≤ i ≤ n−2 and ρ(i+1)−ρ(i) ∼ Exp(i+α)
for i ≥ 0.

One can check that Wt at its jumps corresponds to Wt and Bt tracks Bt (with a
time change, since we have removed the scaling corresponding to Rt). This is true
because the transition probabilities for either chain are given by (7). Letting

ρ∗ := ρ(min{i ≥ 1: ρ(i) < σ(i)}),
this correspondence holds up to the stopping time

τ = σ(n− 1) ∧ ρ∗

at which point either no white or no red vertices remain. We can use this coupling
to characterize X as:

X(Kn, x0, α, λ) = n−Wτ .

We obtain monotonicity of X in λ, α, and n by virtue of this coupling. To go
into more detail, increasing λ speeds up the jump times σ(i), this stochastically
increases ρ∗, thus decreasing Wτ and increasing X. On the other hand, increasing
α speeds up the jump times ρ(i), which stochastically decreases ρ∗, thus increasing
Wτ and decreasing X. Lastly, increasing n speeds up the jump times σ(i), thus
this increases ρ∗, which results in a stochastic increase to X.

Remark 10. An interesting future inquiry is generalizing the results from [15] to
chase-escape with conversion. The main difference is the constant immigration at
rate α, which appears to have a non-trivial impact on the key tool that pure birth
and death processes are representable as time changes of unit Poisson processes.

6. Proof of Theorem 2

In this section, we will take α > 0 to be fixed and indicate the dependence of the
measure P on λ with a subscript Pλ. First we prove the lower bound. We proceed
by showing the stronger statement that Eλ[X] < ∞ for sufficiently small λ. Let
Γk be the set of all vertex self-avoiding paths of length k starting at x0 that are
present in G. Interpret Γ0 = (x0) as the path of length 0 starting at x0. We say
that red survives on a path γ ∈ Γk if, for chase-escape with conversion restricted
only to the passage times along γ, the terminal vertex of γ is at some point colored
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red. We emphasize that survival along γ ignores the influence of red and blue from
all edges not belonging to γ.

Let Ak = Ak(λ) be the event that k is ever colored red in chase-escape with
conversion on the infinite path 0, 1, 2, . . . with 0 initially red. Observe that

Pλ(red survives on a path γ of length k) = Pλ(Ak).

A necessary condition for Ak is that at each site i = 0, 1, . . . , k − 1, red spreads
from i to i+ 1 before i converts to blue. This happens with probability λ/(λ+ α)
independently at each site. Thus,

Pλ(Ak) ≤
(

λ

λ+ α

)k

.

Let H ⊆ G denote the set of sites that are ever colored red, so that X = |H|.
For any vertex v ∈ H there must be a path along which red survives with v the
terminal point. Hence,

X ⪯
∞∑
k=0

∑
γ∈Γk

1{red survives on γ}.

Taking expectation and using the bound on Pλ(Ak) plus the fact that |Γ0| = 1 and
|Γk| ≤ d(d− 1)k−1 for k ≥ 1 gives

Eλ[X] ≤
∞∑
k=0

|Γk|Pλ(Ak) ≤ 1+
dλ

λ+ α

∞∑
k=0

(
(d− 1)λ

λ+ α

)k

.

This quantity is finite so long as (d−1)λ/(λ+α) < 1, which holds for λ < α/(d−2).
Now we prove the upper bound on λc(α). We will use here the notation of

defining the process through random variables associated to directed edges which
was introduced in Section 2. For each vertex x ∈ G, let N (x) be the collection of
vertices connected to x. As a reminder of the necessary notation, recall that for
any vertex x ∈ G and y a neighbor of x, y ∈ N (x), we define Ex,y to be the directed
edge connecting x to y and Ey,x as the directed edge connecting y to x. As before,

we assign the random variable R⃗x,y to the edge Ex,y, which defines the time until

red spreads from x to y and the random variable B⃗y,x to the edge Ey,x to be the
time until blue spreads from y to x. Let Cx be the time until vertex x converts
from red to blue. With this notation in place, we call a vertex x ∈ G good if

max
y∈N (x)

R⃗x,y < min
y∈N (x)

B⃗y,x ∧ Cx.

In words, this means that a vertex x is good if the time it would take to spread red
to all its neighboring sites is less than the shortest possible length of time after x
becomes red before blue can affect the site, either through conversion or spreading.

If C is the connected component of good sites containing x0, it is easy to deduce
that all sites of C will at some point be colored red. This is because red spreads to
all of its neighbors from each site in C before being affected by blue. Thus, X ⪰ |C|.
We then have Pλ(X = ∞) ≥ Pλ(|C| = ∞). Recall that pc = pc(G) is the critical
threshold for Bernoulli site percolation on G. It suffices to show that for each x ∈ G,
Pλ(x is good) > pc for λ sufficiently large as this implies that Pλ(X = ∞) > 0.

The probability a given site x is good is the probability the maximum of |N (x)|
independent Exp(λ) random variables is smaller than the minimum of |N (x)| inde-
pendent Exp(1) random variables and one independent Exp(α) random variables.
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Because |N (x)| ≤ d, the probability x is good is bounded below by the probability
that Rd, the maximum of d independent Exp(λ) random variables, is smaller than
Bd, the minimum of d independent Exp(1) random variables and one independent
Exp(α) random variable. Thus,

Pλ(x is good)≥Pλ(Rd < Bd) =

∫ ∞

0

Pλ(Rd < z)fBd
(z)dz,

where fBd
(z) is the density of Bd.

We would like to find a condition on λ that ensures this integral is strictly larger
than pc. One way to do this is to note that Rd ⪯ R′

d ∼ Gamma(d, λ) i.e. the sum
of d independent Exp(λ) random variables, since the maximum of d independent
Exp(λ) random variables is bounded by the sum. This has a simpler formulation

Pλ(x is good) ≥ Pλ(R
′
d < Bd) =

(
λ

λ+ d+ α

)d

.

The formula is easily derived from iteratively applying the memoryless property
of the exponential distribution since each of the d independent Exp(λ) random
variables in the sum comprising R′

d must occur before the Exp(d + α)-distributed
random variable Bd.

Letting p = pc, some algebra then gives that

λ >
p

1
d (d+ α)

1− p
1
d

=⇒
(

λ

λ+ d+ α

)d

> p.

Replacing p1/d with 1 in the numerator on the left yields that whenever λ ≥ (d +
α)/(1− p1/d) we have Pλ(X = ∞) > 0. Thus, λc(α) is no larger than (d+α)/(1−
p1/d).

References

[1] Erin Beckman, Keisha Cook, Nicole Eikmeier, Saráı Hernández-Torres, and Matthew Junge.
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