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Abstract

This dissertation examines the asymptotic behavior of three branching processes.
The first is a branching process with selection; the selection is dictated by a fitness
function which is the sum of a linear part and a periodic part. It is shown that
the system has an asymptotic speed and that there is a stationary distribution in
an appropriate moving frame. This is done through an examination of tightness of
the process and application of an ergodic theorem. The second process studied is a
branching process with selection driven by a symmetric function with a single local
maximum at the origin and which monotonically decreases away from the origin. For
this process, a large particle limit of the system is proven and related to the solution to
a free boundary partial differential equation. Finally, a branching process is studied
in which the branch rate of particles is a function of the empirical measure. Weak
convergence to the solution of a non-local partial differential equation is proven.
Tightness is proven first, and then the limit object is characterized by its behavior

when applied to test functions.
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1

Introduction

An interacting particle system is a collection of particles that behave in a prescribed
random way and interact with each other through a set of rules or through a common
environment. Many of the mathematical questions which arise concerning interacting
particle systems are related to how different microscopic rules of motion and interac-
tion between particles influence the macroscopic system. This is a broad idea which
can be captured in many different ways; relevant aspects of study include looking
at what happens as the number of particles in the system is increased or analyzing
the system behavior after a long period of time. In addition to the mathematical
interest in these problems, interacting particle systems are appealing to a broader
scientific audience as a way to model biological and physical observations. As such,
the interplay between these subjects is large; biology and physics have provided
substantial inspiration in the mathematical development of the field of interacting

particle systems.



1.1 Evolutionary Models

Interacting particle systems have been used extensively to model evolutionary ideas
of selection and competition. This is done primarily in one of two ways.

The first is through a selective force, which removes/kills particles from the system.
One way this is invoked is to have a selection rule based on a particle’s position in
relation to other particles in the system. This selection dictates interaction between
the particles and drives the evolution of the population.

Another method of evolutionary interaction focuses on a particle’s reproduction rate,
rather than removal of particles from the system. Such models assume that fitness of
an individual can be represented by a change in the relative branch /birth rates of the
particles; that is, the more fit individuals in a population are the ones that are more
likely to reproduce. This interaction mechanism is common in multi-type branching
models, especially those which model diseases with the ability to mutate, such as
cancer. Formulating fitness in this way removes the need for a pre-defined “fitness
landscape”, which is a quantity that can be difficult to get a hold of in biological
applications. As such, this formulation is often appealing to those who are looking

to use experimental parameters in the construction of models.
1.2 Structure of Paper

In this dissertation, we will look at both of these types of competition through
different interacting particle systems. The focus of the results is analysis of the long
time limits and large particle limits of the processes.

In Chapter 2, we give necessary background to understand the work in later chapters,
including definitions of the common objects and an introduction of theorems and
properties that will be of use. In Chapter 3, we study the N-BBM branching-selection

process with fitness function z+ W(x), where W(x) is a periodic function. In Chapter



4, we give results for an N-BBM system where the fitness function is a symmetric,
decreasing function with a single local maximum at the origin. Finally, in Chapter 5,
we analyze a system of branching Brownian motions in which the particles interact
through their branch rate. We study the case where the branch rate takes a specific

form as a function of the empirical measure.



2

Background

2.1 Branching Brownian Motion

A fundamental component of each of the particle systems we study is an object
called branching Brownian motion (BBM). Informally, branching Brownian motion
is a spatial stochastic process in which particles move like Brownian motions and at
random, exponential times, split into a (possibly random) number of new, indepen-

dent Brownian motions.
2.1.1 Brownian Motion

Branching Brownian motion is built out of a combination of individual Brownian mo-
tions. A one-dimensional Brownian motion is a stochastic process with the following

properties

1. Iftyg <ty <--- <ty then B(to),B(t1> — B(to),B(tQ) — B(t1>, e
B(t,) — B(t,—1) are independent.



2. If s,t > 0, then B(t + s) — B(s) < N(0,t); that is,
P(B(t+s) — B(s) € A) = / Le_gﬂ/%5 dx
AN 27t

3. t — B(t) is continuous with probability 1

One can show that such a process exists (see for instance [12], among others). From
the definition of one-dimensional Brownian motion, we can generalize to higher di-
mensions with multidimensional Brownian motion. A d-dimensional Brownian mo-
tion starting at (x1, 7, ...,14) € R?is a process B(t) = (B(t),..., BY(t)) where the
B(t)’s are independent, one-dimensional Brownian motions with B*(0) = zj,.

An rate \ exponential random wvariable T is a random variable with probability
density function f(x) = Xe ™ for all x > 0 and f(z) = 0 for all x < 0. The
associated CDF is P(T < z) = 1 — e for x > 0 and E[T] = 1/\. This random
variable is important in the construction of branching Brownian motion because it is

memoryless; that is, if T' is a rate A exponential random variable and t,s > 0, then
P(T >t +s|T >s)=e ™

This means that exponential random variables are independent of their past behavior,
making them very useful in the construction of Markov processes (for more details,
see [12]).

Another property of exponential random variables which will be useful is their rela-
tionship to the Poisson random variable. Let {7}};cn be a collection of independent
rate A exponential random variables. Fix at > 0 and let N; = max{k | Zle T, <t}
then N, < Poi(At).

Exponential random variables have the property that if 77,75, --- , Ty are indepen-
dent rate X\ exponential random variables, then min(7y, T3, ...,Ty) is equal in dis-
tribution to an exponential rate A/N random variable.

5



2.1.2  Definition of Branching Brownian Motion

We will define a rate A branching Brownian motion with offspring distribution p. Let
{Bi(t)}rew be a collection of independent Brownian motions in R, starting at the
origin, and {7;x};ken be a collection of independent exponential random variables

with mean Define p, a probability distribution on N = {0,1,2,---} and let

L
{Ai}ren be a collection of independent random variables distributed according to
the distribution p. For ¢ < 71, X(t) = Bi(t). At t = 711, A; — 1 new particles are
added to the system; if By (7y1) = b1, then we say that X (71,) = (b, by,...,b) € R4,
Each of the new particles will move like an independent Brownian motion. Let
My = ming_y__a, Top. For 71 < t < mo, X(t) = (Bi(t),b1 + Ba(t — 711),b1 +
Bs(t — 711),-+ b1 + Ba,(t — 11)). At mg, particle X} branches and introduces
A — 1 new particles into the system, where k£ = arg min, .; 4, 7o;. Therefore, letting
Xi(mg) = by, we get X(my) = (Bi(ma), by + Ba(mg — 711),--+ , b1 + Ba,(my —
T11), bo, b, - -+, by) € RA+42=1 The pattern continues in this manner, with each
particle that is introduced into the system being associated to a Brownian process to
define the increments and a collection of exponential random variables to determine
splitting times for that particle.

If Ay =2 a.s. for all k£, we call the BBM a binary branching Brownian motion.

We can also view BBM as a measure-valued process, with

N
p(t) = bx.
k=1

where IV, is the number of particles alive at time ¢ (that is, number of particles whose

birth time is before t).



2.1.3 Properties of Branching Brownian Motion

As a fundamental probabilistic object, the properties of branching Brownian motion
are well studied. Some properties of this object are summarized below.

The first property gives us a distribution for the number of particles

Theorem 1. Let N; be number of particles in a binary BBM at time t. Then
N, 2 Geo(e ™)
That is, the distribution of Ny is geometric, with P(N, = k) = (1 — e )*1(e™).

The proof of this can be done by verifying that the probability generating function of
the variable NV, is precisely that of a geometric random variable with the appropriate
parameter. A proof in a restricted case can be found in Appendix A.

One of the tools most frequently used in the analysis of particle systems is the hy-
drodynamic limit. A hydrodynamic limit is a scaling limit of the microscopic system
which reveals macroscopic properties, often as the solution to a partial differential
equation (PDE). The name comes from hydrodynamics itself; particles move in a
fluid randomly but display large-scale, deterministic behavior that can be quantified
using PDEs. Finding a hydrodynamic limit can be thought of as trying to find a
law of large numbers (LLN) for the empirical measure of the system. In the case of
non-interacting particles, this is well-established; once the particles begin to interact
and independence is lost, this LLN can be difficult to obtain.

The following theorem describes the hydrodynamic limit of a system of independent

branching Brownian motions.

Theorem 2. Let XN (t) be a particle system beginning with N binary, rate 1 branch-
ing Brownian motions in R where the initial positions of each particle are cho-

sen independently and distributed according to the probability density p(x). Let
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Ny
1
,uiv(x) =¥ Z dx,(t), where Ny is the number of particles alive at time t.
k=1

Then pl¥ (dz) = u(w,t) dv weakly, where u(x,t) is the solution to the pde

1
Up = Uz +u xERT>0
2 (2.1)

u(z,0) = p()

The proof contains a classic argument in the study of hydrodynamic limits. In par-
ticular, we must argue two things. First, we show that the collection of solutions
is tight and is therefore pre-compact. Second, we show that any limit of any sub-
sequence is a weak solution to 2.1. The uniqueness of the solution to the PDE in
turn guarantees uniqueness of the limit, giving the desired result. A full proof can

be found in the appendix.
2.2 Interacting Particle Systems

As defined above, each particle in a branching Brownian motion is independent of
the others. The process we now focus on includes particles which interact with
each other. Adding dependence in the process makes the study of the system more
complicated, and small variations to the system can make the process much less

amenable to study.
2.2.1 Branching Brownian Motion with Selection

The interacting particle model that will be studied in Chapters 3 and 4 is from a
class of models called branching Brownian motion with selection. These are branching
processes in which interaction between the particles occurs through the removal of
particles from the system, depending in some way on the other particles in the
system. We will employ a selection mechanism which ensures that there are exactly

N particles designated as alive at any time ¢; this process is often called an N-BBM,

8



to indicate the fixed system size. One can interpret these processes as models of
survival of the fittest, and this idea dictates much of the terminology surrounding

the process.
2.2.2  Definition of an N-BBM

We define an N-BBM with fitness function V(z) as follows. First, we specify a
multi-type branching process that will generate the N-BBM process. Let {Y;}¥,
be a collection of independent, binary, rate A\ branching Brownian motions. At
time 0, all particles are labeled as alive (A). Let 71 be the first branch time of
the Yi’s. If k = argmin,;.y V(Yi(71)), where any ties are broken by uniformly
choosing one particle index, then the label of Y) changes to dead (D) at time 7.
All particles which are born take the label of their parent, and all particles move
like independent branching Brownian motions. Note that if Y) is both the particle
that branches and the particle that is removed, we choose to have the new particle
born be alive. Therefore, the process at 71 contains N type A particles and 1 type
D particle. The process is then defined in a similar manner for all ¢. At each time
t, there will be N alive particles, and the number of dead particles will grow over
time. For each time ¢, let X;(¢),---, Xn(f) enumerate the positions of the alive
particles, with X;(¢) > Xs(t) > -+ > Xn(t). Then we define the N-BBM X () as
(X1 (t), Xo(t), ..., Xn(t) € R

Notice that the only way for a particle to be alive at time t is for the particle and
all its ancestors to have been alive for all s < ¢. That is, type D particles can never
become type A particles.

Unless otherwise indicated, we will assume without loss of generality that the N-BBM

is rate 1; that is, A = 1.



2.2.3 Properties of an N-BBM

Notice that unlike BBM, there are always exactly N particles in N-BBM. Therefore,
the waiting time between each birth event is an independent, rate N\ exponential
random variable (since it is the minimum of N independent rate A exponential ran-
dom variables). This leads us to a theorem about the behavior of N-BBM birth

events.

Theorem 3. Consider a time interval [t,t + h] and let M}, be the number of birth

events of a rate 1 N-BBM process in that interval. Then My, L Poi(Nh) and there-
fore, P(My, > 2) = O(h?) as h — 0. More precisely, this means that there exists a
constant C such that

P(M;, > 2
limsup% <(C
h—0 h

The first statement in the theorem follows from the fact that interarrival times in
a Poisson point process on RT are exponential, and the second part of the theorem
follows from the first. Because M, < Poi(NNh), we have that

P(M;, >2)=1—e¢ (14 Nh)

=1-(1+Nh)>_ (_Zh)k
k=0 '
= (Nh)* = (L+ Nh) Y —(_]Ij‘h)
k=2 ’

for constants c;. So this probability is O(h?) as h — 0.

10



2.3 Additional Notation and Key Ideas

2.3.1 Ulam-Harris Notation for BBM

In addition to the notation for BBM used in 2.1.2, some proofs will also make use of
the Ulam-Harris labeling system. This labeling system makes it easier to reference
the underlying tree structure of BBM; it is defined as follows.

Let Y(t) be a branching Brownian motion and U be defined as the set of all finite

ordered tuples of the natural numbers:

i=1

We associate to each particle in Y'(t) an element u € U; the index is assigned to
indicate the lineage of the particle. That is, Y, (t) with u = (1, 3,2) is the location
at time t of the second child of the third child of the first initial particle.

Those familiar with Ulam-Harris notation should note that this is slightly different
than the standard definition. In particular, many uses of this labeling system include
the label §) to indicate the initial particle at time 0 (corresponding to the root of the
underlying Galton-Watson tree). However, because all the situations in which we
will use this notation begin with not one but N branching Brownian motions, we
omit the () label and instead label the N initial particles with the tuples {(i)}.;.
Because the label of each particle relates directly to its lineage, the labels of particles
give us more information about how particles relate to one another. For instance,
Y, is an ancestor of Y, if there exists a w € U such that v = (u,w), where (u,w)
is the concatenation of v and w. In this case, we write u < v. |u|, the number of
coordinates in the tuple u, is the generation of Y,.

When using this notation, we say that a parent particle dies and is replaced by their
children at each birth event. If 7, is the birth time of Y,, then we need to define
Y, (s) for s < 7,. We choose to use the convention that Y, (s) = Y,(s), where u < v

11



and Y, is alive at time s. This allows us to refer to the entire history of a particle
through the positions of its ancestors.

When using Ulam-Harris notation, we will often write A; C U to indicate the indices
of the set of alive particles at time ¢. Therefore, N; = | A;| would indicate the number
of particles alive at time t. To avoid confusion, indices in Ulam-Harris notation will
use the letters u, v, and w and indices in N as defined in Section 2.1.2 will use the

letters 7, j, and k.
2.3.2  Many-to-one Lemma

One of the basic facts which will be used extensively in this dissertation is a tool
called the many-to-one lemma. We will state and prove the specific version used in
the later proofs; however, much more general versions exist. See for instance, the
statement and proof of a many-to-few lemma in [14].

Let Y(t) = (Yi(t),Ya(t), -+ ,Yn,(t)) be a rate A\ branching Brownian motion with
offspring distribution p = {pm }men. Ny € N is the number of particles alive at time

t and Y(0) = (x).

Lemma 4 (Many-to-one Lemma). Let f be a measurable function on R. Then

E. [Z FYe(t) | = E[N] Eo[f(B(2))]

where B(t) is an independent BM started at x.

Proof. We give a PDE proof of this fact. Define

Ny

Z f(Yi(1))

k=1

u(z,t) = E,

12



and let 7 be the first branch time of the BBM. Then we can say that

(e, t) = E, [Z F(Ya(1)) ‘T >t|P(r > 1)+ E, f:f(yk(t)) ]T < t] P(r < 1)
= E[f(B1)](e™) +E, th(Yk(t)) ‘ T < t] P(r <t)

Let n(x,t) = E.[f(B(t)] and note that n(x,t) solves

1

§7Imz

n(x,0) = f(z)

=

To simplify the second term, we condition on 7 = s:

Ny t Nt e s
E, [Z FVi(D)) ] < t] P(r <t)=P(r < t)/o E, [Z F(V(1)) \ r=s ﬁ ds
k=1 k=1 =
t Nt
= / )\e—As k. [Z f(Yk(t)) ‘T = S]
0 k=1
Define M to be the number of offspring at the branch event. Then
Ny N/ Ny
E, [Zf(Yk(t)) ‘ T=sM= m] =E | fG@) + -+ > F(Yil?) ‘ T=s5M= m]
k=1 k=1 k=1

where th is the number of particles alive at time ¢ whose ancestor was offspring j.

Because each BBM is identical and independent, this gives the equivalence

o |30 FOR0) 4+ 3 FORE) | 7 = s, M = m| = mu(y.t— )
k=1 k=1

13



Integrating over all possible branch locations y € R and summing over the potential

number of offspring, we get

/ "\ ME, [iﬂmt))\msl =S o / [ et = spola = o

= E[M] /0 /[R e M=y (y, )Pz — y,t — 5) dy ds
(2.2)

where the last equality comes from a change of variables, and ® is defined as

1
O(z,t) = me_l@/m

which is the fundamental solution to the PDE

1
<I)t = _q)mz
2

Combining what we have, we see that

¢
u(z,t) = e Mn(x, t) + E[M] / / e My, §)B(x — y,t — s) dy ds
0o Jr

—e M [n(x, t) + E[M] /Ot /[R AeMu(y, s)®(x —y,t — s) dy ds

Isolating the expression in the brackets, we see that

w(x,t) =n(x,t) + E[M] /Ot /R AeMu(y, s)®(x —y,t — s) dy ds

is the Duhamel formula for the solution of the PDE

1
Wy = W + E[M]AeMu(z, t)

w(z,0) = f(x)

14



Since eMu(x,t) = w(x,t), we see that

wy = AeMu(z,t) + e Muy

At
Wyy = € Ugy

Plugging these in the PDE solved by w, we get

1
ety + eMu, = §eAtum + E[M] e Mu

1
eMuy = M | Zuy, + (E[M] — 1)

2
1
U = U + (E[M] — 1) u
Therefore, u(x,t) solves the PDE
1
Ut = Sl + (E[M] —1DAu (2.3)
u(z,0) = f(z) (2.4)

If we actually solve this PDE, we see that u(x,t) = eEM=DNME [£(B(t))]. Noting

that E[N;] = eEMI=DX " we have proved the many-to-one lemma:;

E. [Z ()| = B[Ny B [f(B(2))]

O

The statement of this lemma is similar to that of Wald’s lemma, but it does not
require independence of the random variables Y (¢). It is necessary to remove this
condition from the statement, as the locations of particles in a branching Brownian

motion are dependent through their common ancestors.
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3

N-BBM with a Linear + Periodic Fitness Function

3.1 Introduction

Let X(t) be an N-BBM with fitness function V(z) = = + ¥(z), with ¥(z) a 27-
periodic function (see 2.2.2 for a precise process definition). We define a selection

window, L, for the function V(x) as
L = inf {d ’ V(z) < V(y) for all z,y € R such that z —y > d} (3.1)

That is, the selection window L is the smallest distance which guarantees that if
Xi(t)—X,(t) > L, then V(Xk(t)) —V(X;(t)) > 0. If V(z) is monotonic, then L = 0;

in general, however, we will be interested in choices of ¥ for which L > 0.

Remember that we choose to label the particles in order of decreasing position in R

for all time:

3.1.1 Related Work

Early work on this system focused on discrete models; particles did not move between

branch events and all the motion of the system came from the displacement between

16



a particle and its parent. In 1997, Brunet and Derrida studied a stochastic selection
system to investigate the effect of a cutoff on the velocity of a traveling wave [8]. In
their model, N particles branched at discrete times, with offspring displaced from
their parents and selected to favor overall motion to the right. They computationally
studied the decrease in the velocity of the traveling wave caused by the finite system.
They found the velocity to be slowed at a rate of (log N)~2. Bérard and Gouére [4]
later verified this asymptotic rate for a similar class of particle systems.

Many variants of Brunet and Derrida’s original system have been studied in recent
years. Discrete models, without the added complication of movement between branch
times, were the first tractable variations to be considered. One such variant was
studied in 2011 by Durrett and Remenik [13]; they looked at a broad class of discrete-
time models similar to those considered in [4], focusing on proving a hydrodynamic
limit. They showed that the system has a positive limiting speed for large times and
has a hydrodynamic limit; the empirical measure limits to an absolutely continuous
measure solving a free boundary PDE as the number of particles goes to infinity.
N-BBM was introduced in 2014 by Berestycki and Zhao [6] as a continuous time vari-
ant of Brunet and Derrida’s system. They studied the problem in d > 1 dimensions
with fitness functions V(x) = ||z|| and V(z) = (z,v) for some vector v. They were
able to describe the long time speed and shape of the finite particle system. In 2017,
De Masi, Ferrari, Presutti, and Soprano-Loto [11] proved a hydrodynamic limit of

N-BBM for d =1 and V(x) = z.
3.1.2  Contribution and Difficulties

In the work of Berestycki and Zhao [6] and of DeMasi et. al. [11], the arguments often
rely on the monotonicity of the fitness function. That is, the ordering of particles by
position and by fitness is the same. This is key in both the coupling arguments used

and in meeting the conditions of the subadditive ergodic theorem (see Proposition
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2 in [4] for an example of a classic proof technique). The speed of the system and
the hydrodynamic limit have not been studied before for N-BBM in the absence of
a monotonic fitness function; many of the standard proof techniques do not apply
in this greater generality. The interplay of the non-monotonic fitness function, the
continuous time motion of the particles, and the continuous time branching behavior

distinguishes the problem studied here from previous work.
3.1.8  Motivation for a non-monotonic fitness function

For the remainder of this chapter, we consider an N-BBM system with a fitness
function V(z) = x+ ¥(z), for ¥(z) a 2m-periodic function. Depending on the choice
of ¥, V(x) may not be monotonic. We are particularly interested in the idea of a
fitness function with local fitness valleys: zones of lower fitness which the particles
must cross to reach zones of higher fitness. Considering such a fitness function
provides an intriguing mathematical setting and gives an abstract look at a situation
of biological mutation which has been conjectured in the development of cancer [15].
Fitness landscapes with local maxima have been of theoretical and experimental
interest to biologists since the 1930’s when Sewall Wright studied the phenomenon
and conjectured his Shifting Balance Theory as a mechanism for movement between
local fitness maximums [18]. A possible factor behind the presences of fitness valleys
in genetic landscapes is the idea of epistasis. FEpistasis is the term given to the
interactions between mutations. When mutations interact in a non-additive way,
pathways of evolution between two high fitness states can be interspersed with low
fitness states. In particular, biologists consider the case in which individuals have
reached a local, but not global, fitness peak and ask whether populations can traverse
the fitness valley to reach the global fitness peak (see [18] for a survey of the field
from a biological perspective).

In this chapter, we study fitness functions with many local fitness peaks but no
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global maximum. The fitness function was not chosen to model a particular bio-
logical situation but rather to abstractly consider the idea of crossing fitness valleys
in a mathematically interesting way. Because fitness functions are difficult to dis-
cover experimentally and likely are not as well-behaved as the functions chosen here,
this work is not intended to be applied directly to a biological system. Rather, we
study mathematically the question of how a population evolves in a landscape with
regularly spaced local maxima, and observe through simulations the behavior where
systems get stuck for a long time in a single fitness peak and the behavior where

systems are able to travel quickly across multiple fitness peaks.
3.2 Main Results

First we show the existence of a stationary distribution of the system in a moving
frame. From that result, it follows almost immediately that the system has a speed.

To make these ideas precise, we define a shift random variable

k(t) = argmin{|Xn(t) — 27k|} (3.2)

kez

which tracks how many periods in front of (or behind) the origin the particle Xy ()
is. In the case of multiple minimizing k values (which occurs when Xy (t) = (2n+1)7
for some integer n), we define k(t) to be the smallest k& value which minimizes that

quantity. From that, we define the shifted process Z(t)
Z(t) = X(t) — 2wk(t) (3.3)

Notice that Z(t) € [—m, 00)N =1 x [~ 7). Because the fitness function is unbounded,
the moving frame is necessary to recenter the system over time. Z(t) is a Markov
process because determining the relative fitness values of the particles only depends
on knowing their relative positions and their placement in the period of ¥, and

relative fitness is enough to decide which particle to remove.
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Our first result says that Z(t) is a positive recurrent Harris chain. Harris recurrence
is the generalization of Markov chain recurrence to Markov processes with general

state spaces; we defer the definitions to make this idea precise until Section 3.3.

Theorem 5. Z(t) is a positive recurrent Harris chain with a unique stationary dis-

tribution .

Once we have the existence of a stationary distribution of the shifted chain Z(t), the
speed of the process X (t) follows from Birkhoff’s ergodic theorem and bounds on the

distance traveled by the maximum of N Brownian motions.

Theorem 6. Let X (0) be chosen according to w, the stationary distribution of Z(t).

Then the selection system, X (t), has a speed. That is,

Xn(t
lim v () =N a.s and in L' (3.4)

t—00 t

for some constant .

Unfortunately, we do not know yet whether vy is strictly positive, though we con-
jecture that it is. See the further questions below and Remark 3.5 in Section 3.5 for
more details on this conjecture.

The proof of Theorem 5 requires the following two technical lemmas. The first tells
us that with high probability, the particles do not spread out too far. In particular,
the statement concerns the distance between the first particle and the last particle.
The proof relies on the fact that a single BBM cannot spread out too far; even though
we have multiple branching Brownian motions and there is interaction, the spread

of the particles can be related to the spread of a single BBM in a tangible way.

Lemma 7. For alle >0 andt > (1+¢)In N,

2 C.
P(IX1(t) = Xn(8)] > 8(L+e)lnN + L) < = + -

(3.5)
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In particular,

lim P (|X1(t) — Xy(t)] > 8(1+e)InN+ L) =0 (3.6)

N—oo

Notice that the bound on the distance depends on N and € but not on £. We have the
explicit representation C. = % Once we know that the particles are relatively close
to each other with high probability, independent of ¢, we can choose an appropriate
collection of sets to show that in the shifted system, the induced measures on RY are

tight.

Lemma 8. {Z(t)}er+ is tight. That is, for every € > 0, there exists a compact set

K. such that P(Z(t) € K¢) < ¢ for all t.

These lemmas are proven in Section 3.3. We end this introductory section with a

few open questions.

Further Questions The results here imply only that the system has some speed, not
that this speed is positive. We believe that this speed should be positive. In fact, we
make the conjecture that vy is exactly the one-dimensional Brunet-Derrida particle
speed, so mirroring a result from [6], we conjecture that as N — oo, yxv — v/2. An
intuitive argument for why this should be the limiting speed can be found in Remark
3.5 in Section 3.5.

Another open question is the convergence of the empirical distribution to a limiting,

absolutely continuous measure whose density is a solution to a specific free boundary

PDE.

Conjecture 9. Let ul¥ = %Zi\;l Ox,t) be the empirical measure of the N-BBM
process with fitness function V(X) = x + V(x) for ¥ a periodic function. Then

ulN (dx) converges weakly as N — oo to a measure u(z,t) dx in the space of measure-

21



valued processes D([0,T], My) and u(z,t) is the solution to the free boundary PDE

1
utzﬁumjtu reR,t>0
/ u(z,t)de =1 for allt (3.7)
Qg

u(r,t)]on,, =0 forallt
where such a solution exists.

The equation for u; is the equation satisfied by a BBM with rate 1. The integral
condition regulates the growth, which reflects the influence of the constant system
size. However, because the particles can be moving, the domain of that integral can
change, giving a free boundary condition. V(x) is not explicitly apparent in the
statement of this PDE, but V(x) will influence the free boundary #(t).

Computational simulations of the process support this conjecture, but we have been
unable to prove it analytically. Computer-generated plots comparing the solution to

the PDE and particle system simulations can be seen in Section 3.5.
3.3 Proof of Theorem 5

We are seeking to prove that the shifted chain Z(t) is positive Harris recurrent. We
begin with the proof of Lemma 7, which captures the idea that the alive particles
do not spread out too far from one another. This is not immediately obvious. We
know that the distance between the maximal and minimal particles in a standard
branching Brownian motion at time ¢ has order ¢. So without selection, the first and
last particles drift farther apart as time goes on. Lemma 7 says that this is not true
in this N-BBM system; there is probabilistic bound on the likelihood of the front

and back particles being too far apart, where the spread is independent of ¢.
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3.83.1 Spread of the Particles

Our first lemma concerns free binary BBM: branching Brownian motion with no
selection. From the definition of N-BBM with selection given in 2.2.2, it is clear
that for each N-BBM process, we have an associated free BBM process given by
Y (t) = (Yi(t),...,Yn(t)) where each Y; is an independent binary, rate 1 BBM. This
process simply ignores the type of each particle and only describes the underlying
movement and branching structure. We prove a result about how long it takes a
single binary BBM, Y(t), to grow to size M. We will use Ulam-Harris notation to
refer to the particles in SA/(t) Here, if 7, is the birth time of particle Y, and u < v
with 7, < t, then we define Y, (t) = Y, (t) for t < 7, (that is, when referring to a
particle’s position before its birth time, we are actually referring to the position of

its ancestor alive at that time).

Lemma 10. Let Y(t) be a free binary branching Brownian motion with branch rate
A. Let 7, = inf{t >0 | Y (t)| = k} be the birth time of the kth particle. Then for

any M > 1, >0,

(1+e)lnM C.
[|D<TM> \ §M5/2

where C; is a constant which depends only on ¢.

Proof of Lemma 10. First, note that 74,1 — 7% 4 Exp(Ak) because there are k parti-

cles with independent rate A branch clocks. With this in mind, we write
M-1
™ = Z Tk+1 — Tk
k=1

where 71 = 0. So 7 is the sum of M — 1 independent exponentials. This means
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that for 8 < A, we have

E [GOTM] _ H E |:e€(Tk+1—Tk):|

P
=T1_6/x

where we have used the moment generating functions of the exponential random
variables to get the second equality. Now we apply the exponential Chebyshev in-

equality:

P <TM > (1+e¢) th) < o 00+e) I M)/AF [eeTM]
— /=

M

< Mt/
- 1-6/A

Choosing 6 such that /X = 2=, we get that

P (TM > W) < C.M /2

where C. = % O

This bound holds for all £ > 0 but is only useful for ¢ sufficiently large, in terms of

M, because C, — oo as ¢ — 07. Now we are ready to prove that the particles do

not spread out too much over time, i.e. no more than a constant which depends on

N.
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Proof of Lemma 7. We introduce the following quantities for ease of reference:

T'=(14¢)lnN

R=2T

Let uy(t) be the index of the kth rightmost type A particle at time t. Then for any
t > s, we define

F(t)={ue A | ug(s) < wv}

The set F}(t) is the set of indices of the free particles at time ¢ which are descendants
of Yy, (s(s), the kth rightmost type A particle in Y'(s). This set allows us to keep
track of both type A and D descendants of Xj(s) at a later time ¢. Finally, define
N3(t) be the set of all indices of free particles at time ¢ of type A or D which were

offspring of particles alive at time s
N
Ne() = @)
k=1

Also of importance will be the events (recalling that L is the selection window for ®
defined in Section 3.1)
A =A{|Xq(t) — Xn(t)| > 4R+ L}

B; = { sup |Yu(s) =Y, (t—T)| < R for all u € N”’(t)} N{|F ()| > N}
set—T,t

which can be defined for all t > T'. Event B, is the event which bounds the movement
of all particles at time ¢ from its alive ancestor at time t — T and specifies that the
number of descendants of the leading type A particle at time ¢ — T has grown to size
N by time t.

By the definition of R and A;, it is clear that

P(A) = P (|Xi(t) — Xn(t) > 8(1+&)InN + L)
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We will prove the lemma first by showing that A, C By, and then giving a bound on
P(Bf).

We will show that P(A; N B;) = 0. When B, occurs, each free particle satisfies
Yu(t) = Yu(t = T)] < R. Let 29 = X;(t —T). When B; occurs, each Y,(t) with
u € N1 (t) satisfies the relationship

Y.(t) <Y, (t—T)+R
(3.8)
S To + R
The second inequality follows from the definition of zg, as it is the maximal type A
particle at time ¢ — 7. Since X (¢) must be one of the particles Y, (¢), Equation 3.8

also says

Xi(t) <xo+ R (3.9)

We will be done if we can bound Xy () from below. To do this, we break the possible
process behaviors into two cases. Let t* = min{s >t —T ‘ |FI=T(s)] > N}. Notice

that when B; occurs, t* < t.

Case 1: If Xn(s) < min Y.(s) — L for all s € [t —T,t*), then no offspring of
u€FI=T(s)

Yo, 4—7)(t—T) is removed by selection before time ¢*. Since |F{~"(+*)| = N and none
of these particles were selected before time t*, we know that all type A particles at
time t* must be descendants of X;(¢ — T'). Because type A particles can only come
from a type A ancestor, this means that all the type A particles at time ¢ are also
descendants of X;(t —T'). By the definition of B, all the offspring of Y, ¢—7)(t = T)
must remain within R of Y, ¢—7)(t —T). Therefore, Xn(t), a type A particle at time

t, must be bounded below by
Xn(t) > Yy ¢-r(t=T) =R

(3.10)
= To — R
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Combining 3.10 with 3.9, we get the bound
| X1(t) — Xn(t)| < 2R (3.11)

Therefore, in this case, | X; — Xn| < 4R+ L, so A; and B; cannot occur at the same

time in this case.

Case 2: Suppose there exists an s € [t—T',t*) such that Xy(s) > min Y.(s)—L;
ueF; ™" (s)

then selection from offspring of X (¢ — T") can occur before t*. Define

s*=min{s >t —T | Xy(s) > min Y,(s)— L}

uGFffT(s)

Then,
Xn(s*) > min Y,(s)—L
uEFlt_T(s)
(3.12)
Z To — R—L

We obtain the second inequality above by noting that every particle with an index
in FI=" is a descendant of X, (¢t —T), so given that B, occurs, it can be no more than
R away from xy at time s*.

To extend this bound to time ¢, notice that any type A particle at time t is a
descendant of a type A particle at time s*. The leftmost type A particle at time s* is
Xn(s*) and satisfies the inequality Xy(s*) > 2o — R— L. Due to the restriction that
children travel no more than R from their ¢ —7" ancestors, Yy (s(t=T) > o—2R—L.
Therefore all descendants of alive particles at time s* had ancestors at time ¢ — T
with positions to the right of 2o — 2R — L. So because Xy (t) must be a descendant

of one of these alive particles at time s*,

Xn(t) > 20— 3R — L (3.13)
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We combine this bound with 3.9 to get
| X1(t) — Xn(t)| <4R+ L (3.14)

Again, if | X (t) — Xn(t)| < 4R+ L, A; cannot have occurred, so A; N B; is the empty
set in this case as well. Therefore, A, N B; = 0, so P(A;) < P(Bf).
We now find a bound on P(By).

P(BF) < P(IF ()] < N)

(3.15)
+P ( sup |Y,(s) = Y,(t —T)| > R for some u € ./\/'t_T(t)>

set—T.,t]

Noticing that P(|F{~"(t)| < N) = P(t* > T), we can use Lemma 10 to see that

- C.
PIF (1) < N) < <=5 (3.16)

To bound the final term in 3.15, let B(t) be a BM started at 0 and write

[P( sup |Y,(s) —Y,(t —T)| > R for some u € Nt_T(t)>

set—T,t]

< 2F Z 1 {sup Yu(s) =Y, (t =T)| > R}

weNt-T@) =T

= 2E[N*T (1) P <sup B(t) > R)

= 4EN'T(1)] P(B(T) > R)
= 4Ne'P(B(T) > R)
< g N2t+e . y—201+e)

=2N"°
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where we have use the reflection principle and the last inequality is obtained from a

common Gaussian tail bound (see Appendix A, Theorem 38). So

P ( sup |Y,(s) = Y,(t —T)| > R for some u € /\/'t_T(t)) <2N°F (3.17)

selt—T,t]

Combining the fact that P(A4;) < P(Bf) and Inequalities 3.15, 3.16, and 3.17, we see
that
2 C-

P(A) < —+

Notice that lim P(A;) = 0 as desired. This concludes the proof of Lemma 7. [

N—o0

3.8.2  Tightness of Shifted Process

Next, we want to show tightness of the measures induced by the shifted system Z(t);
that is, we want to find a compact set K, such that for each ¢, P(Z(t) € K¢) > 1—-¢&

for any & > 0.

Proof of Lemma 8. Fix £ > 0 and N > 2. Choose 7 to be sufficiently large such that

— +

2 c, ¢
vt v <3 (3.19)

We know that this can be done because the constant C,, gets smaller as 7 gets larger.
We define
M=8(1+nInN+L (3.20)

and K, = [—m, M + 7]N. Because Z(t) preserves the order of the particles in X (),
P(Z(t) € K1) = 1 = P(|Xy(t) — Xy ()] > M)

Applying the previous theorem, we can see that for all t > (1 +7)In N,

POX1(t) = Xn()| > M) < 5 <€

I
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so P(Z(t) € Ky) > 1—¢forallt > (1+n)In(NV). To consider ¢t < (1 +7n)In N, we

define a new compact set Ky = [—m, M + 2I¢ + 7] where I is chosen so that

DO [y

Then we have that
M—-L

P(IX1(t) — X (8)] >M +21) < (X (1) — Xn(t)] > —

+2I¢)

< P(1X1(0) = Xn(0)] > 21)

+P <|X1(t) — Xn(t) > + 2L (| X,(0) — Xy (0)] < 215)

If all particles stay within 2(1 + 7) In(N) of their original positions up to time (1 +
n)In(N) and all particles started within 2/ of each other, then |X;(t) — Xn(t)| <
4(1 4 n)In(N) + 21 = 2=£ 4 2], Therefore, we can bound the second probability
from above by the probability that at least one of the N BBMs has a particle leave
the tube of radius 2(1 + 7) In(N). Using an identical calculation to the one used to
get Equation 3.17, we can see that this probability is therefore bounded by 2N ™" as

before.

P(IX1 (1) — Xn(8)] > M + 2I) < P(IX1(0) — Xx(0)] > 2I¢)

211 30) — X(0)] < 21 )

where the last inequality comes from our initial choice of 7. Therefore,

P(Z(t) € Ky) > 1—¢
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for t < (1+n)In(N).
Because the union of compact sets is compact, we let K¢ = K1 U Ky = [—7, M +

2I¢ 4+ ], and we get that for all ¢,
P(Z(t) € K¢) >1—¢

Therefore, the collection of random variables {Z(t)}, is tight. O
3.3.8 Harris Chain Definitions and Proof

We continue towards the proof Z(t) is a positive recurrent Harris chain. First, we
give the necessary definitions, including defining precisely Harris recurrence, positive
Harris recurrence, and petite sets - special sets which are representative enough that
determining Harris recurrence on that set gives Harris recurrence of the process. We
use the notation of [17].

Let S(t) be a time homogeneous Markov process with state space (X, B) with transi-
tion semigroup P'. Suppose the process evolves on the probability space (Q, F, P,),

where S(0) = z € X. For each measurable set A, we define

77A=/ Lsyeadt (3.22)
0

If there exists a finite measure ¢ such that the event {ns = oo} holds a.s. for all
A with ¢(A) > 0, then Z is called Harris recurrent. We use the idea of Harris
recurrence as a way of making precise the idea of recurrence for a Markov chain in
an uncountably infinite state space, like RY. 7,4 is a random variable defined as the
amount of time S(¢) spends in the set A.

It is known that a Harris recurrent right process has an essentially unique invariant
measure. If this invariant measure 7 is a finite measure, then we call S positive

Harris recurrent.
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The work of Meyn and Tweedie [17] gives two useful characterizations of Harris
recurrence, which we will use when we get to the proof of Theorem 5 below. These
characterizations require the idea of a sampled chain and the associated petite sets.
We define only a very special case of the sampled chains discussed in [17]. A T-
skeleton chain of S(t) is the chain Sy = S(kT') for some fixed time T'. A @-petite set
for a T-skeleton chain is a set A € B such that there exists a non-trivial measure ¢
with Pr(z,-) > ¢(-) for all x € A.

We now put these definitions in context for the shifted process Z(t). We will reference
several theorems from Meyn and Tweedie [17], which are also stated in Appendix
A for ease of reference. The state space of Z(t) is [, 00)¥ 1 x [-7m, 7). Fix an
¢ € (0,1) and define 7 as in the proof of Lemma 8. Define Z;, to be the discrete time
T-skeleton chain of Z(t) with T'= (1+n)In N. That is, Zy = Z(kT) for all k € Z™.

We show a petite set for this sampled chain.

Lemma 11. Let C¢ = M + 21 as defined above in 3.19, 3.20, 3.21. Then Kg =

[—7, Ce + 7N ~1 x [—m, ) is p-petite with ¢(dx) = pdx on C and 0 on K¢, where

N

=e inf P(r —y, T >0
p (z,y)€[—m,Cetm]? ( y )

and ®(x —y,T) = \/#;Te—(x—yV/ZT is the transition density for a single

one-dimensional BM run for time T, starting from x.

Proof. We need to show that P (x,A) > ¢(A) for all x € Kg,A € B. Certainly
for ANK ¢, this is true, as the measure ¢ is 0. Therefore, it suffices to show this

for a measurable set A C Kg. Let x € Kg be our starting position with x =

(1, 22,...,zy) and let u(A) be the Lebesgue measure of A. Then we know that
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Pr(x, A) > P(no branches before time 7" and X (¢) moves from x — A)

=e¢ . P(an N-dim. BM moves from x — A)

= NT. / Hi]\ilq)(:vi —y;, T) dy
A

N
Ze_NT-( inf CDx—y,T) /dy
(z,y)€[—m,Ce+n]? ( ) A

N
o PR X )

€[—n,Ce+n]?
= pu(A)
= ¢(4)
This shows that K, ¢ satisfies the definition of a p-petite set. ]

Using this petite set, we can show that Z(t) is positive Harris recurrent.

Proof of Theorem 5. Theorem 3.3 of [17] states that if K is a petite set and Po(rg, <
) =1 for all z € [—7,00)N 1 x [—7,7), where Tire = inf{k | Zy € K¢}, then Z(t)
is Harris recurrent. Here we are using the fact that the first hitting time of kg
by Z(t) is bounded above by TTI%&, so it is enough to bound the expectation and
probability of the hitting time by Z;. By Lemma 7, we can see that the probability
of being outside that Kg at time KT is bounded from above by £&. So we can say

that Tie is stochastically dominated by a geometric random variable: Tk, = G where

G < Geo(1 — &) because the chance the process is outside K, at any time ¢ is
bounded above by {. Therefore, for all x, P,(7x, < oo) = 1. Therefore, Z(t) is
Harris recurrent by Theorem 3.3 of [17].

To say that this chain is positive Harris recurrent, we use Theorem 1.2(a) of [17],
which says that Z(t) is positive Harris recurrent if and only if there exists a closed
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petite set C' such that for some § > 0,

sup E,[7¢(0)] < o0 (3.23)

zeC

where 7¢(d) is the first return time to C' after time .

Notice that }AQ is closed in the state space of Z(t). Because our bound on the
probability that the process is outside of K ¢ at time ¢ does not depend on the starting
configuration, we can use the same stochastic dominance in this case as above to say
that

sup B, [z, ] < o0 (3.24)

N-1

for all z € [—m, 00) X [—m, 7). This means that

sup [Ex[TfQ(l)] < 00 (3.25)
IGK&
Therefore, Z(t) is positive Harris recurrent, which implies that Z(¢) has a unique

invariant distribution. O
3.4 Proof of Theorem 6

Now we want to show that the existence of a stationary distribution for Z(t) implies
there is speed for the system. We will use Birkhoff’s ergodic theorem to make a

statement about the speed of the system.

Proof. Recall that we have defined Zy(t) as the last component of the process Z(t)
and k(t) as the process which keeps track of the true spatial location of the process

at time t. For any ¢, we can write

XN(t) ZN(t) +27Tk3(t)

t t

_ Zn(t) k(t) — k(Toms))
=y tem : t
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where the 7,’s are the branch times of X (¢) and m(t) is the total number of branch
events up to time t. So 7; — 7j_1 < Exzp(N) and m(t) < Poi(Nt). We let 7,,) be
the most recent branching time before time ¢. Notice that because the distribution
of k(;) — k(;_1) depends only on Z(7;_;) and we know that the distribution of Z(t)
the stationary distribution for all times, the distribution of k(7;) — k(7;_1) is the
same for all j. This means that each term in the sum is identically distributed. So

we can apply Birkhoff’s ergodic theorem to say that

m(t)
k(t) —k Uk k(T;_
hm XN—(t) — hm ZN(t) + 27'(' ( ) (Tm(t)) + 27_‘_2]*1 (T]) (T] 1)
t—o0 t—o00 t t 1
k(t) — k(1 3.27
=0+ lim 27 ®) (Tms) + 27E, [k() — k(0)] lim m(t) (3.27)
t—o00 t t—oo

=0+ 27NE,[k(r1)] asandin L'

The limit of the first term is 0 because Zy(t) € [—m, 7|. Because k(7)) — k(0) can be
bounded by the number of 27-increments traveled by the maximum of N BMs in an
exponential amount of time, we can use the fact that the maximum is exponentially
unlikely to travel more than v/2 +a where 1 < Exp(N) to say that E,[k(m)] < 0.
That fact also allows us to say that because k(t) — k(7)) < SUD, o <s<mii k(s)—
k(Tm@)), and this supremum is summable by the same argument, the limit of the
second term also goes to 0. The last equality also relies on the fact that m(t) is
Poisson with mean Nt, so m(t)/t converges a.s. and in L' to N (see Appendix A).

Therefore, we have the following limit

Xn(t
lim Xwlt) =2 NE,[k(m)]
oo 1 (3.28)
=~y asandin L

for some vy < oo. Therefore, we have shown that the system has a speed. m
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3.5 Computational Results

We will use the specific case of ¥(z) = 2sin(z) to demonstrate several aspects of
the system, with simulations done in MATLAB R2016a. In this case, V(x) is not
monotonic, and for this choice of V(x), the finite particle system displays two distinct
types of behavior: either the system moves through space, or the system becomes
trapped in the peak of a local fitness maximum. We will look at each of these types

of behavior separately. Note that the simulations were done using rate v/2 BMs.

Mowving Behavior In some simulations, the particles move to the right at a speed
comparable to the speed of a linearly selected system. Figure 3.1a shows a comparison
between particles selected according to V(z) = x + 2sin(x) (periodic selection),
and particles selected according to V(z) = z (linear selection). In this simulation,
the birth times of the particles are coupled, which makes the comparison easier to
visualize. Particles are all started from = = 2. Figure 3.1b shows the position of the
particles when the simulation ended. In this figure, a gap occurs in the positions of
particles subject to periodic selection. This split is positioned around a local fitness
minimum. For a closer view of this phenomenon, see Figure 3.2. Both selection types
have a similar decrease in the density of particles at the front of the system.

If we consider a 2-dimensional version, with the radially-symmetric fitness function
Vao(z) = ||=|| + 2sin(||z||), we see similar results. We start all particles at (0,0) and
set the branch rate A = .65. If you view the particles at fixed time intervals, you
can see that there are two groups of particles, with an unoccupied region in between
(see Figure 3.3). This unoccupied region runs along an arc, because the level sets
of Va(z) are circles. The particles themselves also appear to spread out along level
sets, which matches the behavior of particles subject to the the fitness function ||z||,

as described by Berestycki and Zhao in [6]. Other similarities to the 2-dimensional
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(b) The final positions of the particles, after 200,000 birth events.

FIGURE 3.1: In this simulation, N = 1000, A = 1, and the positions of the particles
are plotted every 10N birth events, up to 200,000 births. The processes are coupled
through the birth times.
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FI1GURE 3.2: When N = 1000, A = 1, after 200,000 birth events, the particles have
a gap at the position of the corresponding fitness minimum. The fitness function
(plotted) is x + 2sin(z).

results of Berestycki and Zhao include the eventual propagation of the particles in
a fixed angular direction, which from simulation seems to be chosen uniformly at

random from [0, 27).

Remark 3.5 'The moving behavior of the periodic selection system appears to be
very close to the speed of the linear selection system in many simulations. To give
intuition behind this observation, consider the following heuristic argument. BBM
with N particles has a spread on the order of In(N), and since the selection window L
is constant in IV, once the particles have spread out, the particles outside the selection

window feel essentially monotonic selection. That is, they only feel selection pressure
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FIGURE 3.3: A simulation in two dimensions with N = 1000, A = .65. The colors
represent different stopping times in the simulation, with positions plotted every 10N
birth events. The fitness function used here is V' (z) = ||z|| 4+ 2sin(||z||).

from behind them, and they move at a speed similar to the one-dimensional Brunet-
Derrida particle speed, with a slightly different finite N correction. If o(N) particles
are found in the selection window as N — oo, then the finite N correction should be
the same up to o((log N)~2). While a direct coupling cannot be established to prove
this because of the nonzero probability that all particles are within the selection
window, this intuition leads us to believe that as N — oo, vy — /2 as is found in

systems subject to monotonic selection.

Trapped Behavior For some simulations, instead of moving in any direction, the par-
ticles get stuck at the first local fitness maximum they encounter. In one dimension,

the particles remain close to zero, and the histogram density plot in Figure 3.4 gives
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FIGURE 3.4: In this simulation, N = 5000 and A\ = 2. The particles have remained
trapped near the origin for 200,000 birth events. The histogram shows the density
of the final particle positions. The line is the conjectured stationary distribution.

an example of the distribution of the particles in this case.
In two dimensions, the particles form an annulus around the origin, as seen in Figure

3.5. The colors represent different times at which the positions were plotted.

Conjecture After observing the behavior of the particles in many simulations, we
made the conjecture that in one dimension, u¥(dr), the empirical measure of the
system, is a finite particle approximation of the measure u(z,t) dz where u(z,t)

satisfies the PDE
uy = Au + Au

/ u(z,t)der =1 forall t (3.29)
Qyt)

u(z,t)|on,, =0 forallt
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FIGURE 3.5: A simulation in 2 dimensions with N = 1000, A = 2. Again, the
colors represent the particle positions at stopping times, stopped every 10N births.
In contrast to Figure 3.3, the particles have not spread out, and instead remain
trapped in the annulus between —m and 7.

with Qe = {2 | V(2) > £(t)}. A computational comparison of the solution to 3.29
to the particle solution was done in Python 3.5 using the Kolmogorov distance (i.e.
the distance between the CDFs). At fixed times, we compared the CDF of u(z,t) dx
to the CDF of the empirical measure. Figure 3.6 shows a comparison of the CDF's at
T =9. The graph shows that the convergence of the CDFs is slow at the singularity
of the PDE solution. Figure 3.7 shows the distance between the CDFs at T' = 9 for
various values of N. Because the measures are random, simulations were run 100
times for each N, and the average of the squared Kolmogorov distance for each N
value was plotted. Values spanning N = 100 to 51200 were run. This free boundary
PDE can explain both behaviors observed by the simulations. The trapped behavior

is a result of the existence of a stationary solution for this PDE in certain parameter
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FIGURE 3.6: A comparison of the CDFs of the PDE solution and particle system
empirical measure at 7' = 9 with N = 51200.

regimes. Let my be a local minimum of V(z) and mg = sup{z < my | V(z) =
V(mo)}; if my —mg > 7 then there exists an a,b € [mo, m1] such that V(a) = V(b)

and b —a = 7 If such an a and b can be found, then the stationary solution is

—Qsin r—a or x € |a
ulw,t) = (\FA( )) for € [a, b] a0

u(a,t) =u(b,t) =0

Figure 3.4 includes a plot of the conjectured stationary distribution compared to
the density of the particles after 200,000 birth events. With A = 2 and V(z) =
x + 2sin(x), a ~ 1.128 and b =~ 3.350.

In higher dimensions, we still expect p (dz) — u(z,t)dz with u(z,t) solving Equa-
tion 3.29. However, the precise form of the stationary solution is less clear, and
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FiGURE 3.7: A plot of the Kolmogorov distance squared, averaged over 100 trials
for each value of N. The Kolmogorov distance is between the particle system CDF
and the free boundary PDE solution CDF at T' = 9. The x-axis is the number of
particles N, and the y-axis is the average of the distance squared.

smaller values of \ seem to be more conducive to the system moving, while higher
values of A result in the stuck behavior. Some values of A, including A ~ .65, give

regular occurrences of both stuck and moving behavior with N = 1000.
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4

N-BBM with a Symmetrically Decaying Fitness
Function

Now we consider an N-BBM with a continuous fitness function which is symmetric,
decays away from the origin, and has a unique local maximum at the origin. Such
a fitness function removes the particle farthest away from the origin at each branch
time. This system should no longer move with a positive speed, because the incentive
is to remain as close to the origin as possible.

The motivation for studying this problem arose from the study of the process in
Chapter 3. In particular, simulations showed that the population of particles can
get stuck in a fitness peak for a long period of time, rather than traveling across R.
When clustered in a single peak, the particles appeared to spread out in the shape of
a sinusoidal peak (see Figure 3.4). By removing all local peaks but one, we are able
to study precisely the behavior of the particles while they remain stuck in a single

peak. V(x) = —2? is an example of a fitness function in the framework we consider.
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4.1 Relevant Previous Work

This problem is very similar to another well-known branching selection model, the
Fleming-Viot model, which defines a fixed boundary and redistributes particles when
they hit that boundary [9]. A precise version of the Fleming-Viot problem can be
expressed as follows. Begin N independent Brownian motions in the interval [a, b].
Allow them to move freely until they hit the boundary, at which point they jump to
the location of another particle in the system, chosen uniformly at random. It has
been shown that if b —a = 7w, then as N — oo, the particles remain in a stationary
distribution, with the (scaled) shape of sin(z) [9]. Studying the system with a free
boundary (that is, one that moves with the maximum and minimum alive particle)

requires different techniques than studying the process with the stationary boundary.

4.2 Main Results

In 2017, DeMasi et. al. [11] proved a hydrodynamic limit of N-BBM on R with
monotonic fitness. In this section, we explain how to generalize their results to in-
clude an N-BBM system subject to a symmetric fitness function which monotonically
decreases away from zero. One can consider V(z) = —z? as a concrete example of
a function satisfying these conditions. Our main theorems are the corresponding
hydrodynamic limit and the description of the limiting object in terms of a free
boundary PDE.

To state our first theorem, we define ¥ to be the empirical measure of the system
at time ¢:

N
1
py = N > dx (4.1)

k=1
Let p be a function with p € L'(R,R+) and p even and satisfying ||p||cc < oo and
My = sup, {f_roo p(z)dx = 0} > —o0.
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Theorem 12. Let X(t) € RY be a system of N-BBMs on R with fitness function
V(z) which is symmetric about 0 and strictly decreases as |x| — oo. Choose each
Xk(0) independently and identically according to a density p, where p satisfies the
conditions above. Then for every t > 0, there exists a probability density function

U(z,t) such that for any a € R, we have

[e.9]

lim pl (dr) = /00 U(z,t)dx (4.2)

N—o0 a

almost surely and in L'.

Theorem 13. Suppose that (u(-,t),£(t)) is a solution to the free boundary problem
U = Upe +u —L<2x<Llt>0
0]
/ u(z,t)de =1 forallt
—(t) (4.3)
u(l(t),t) = u(—L(t),t) =0 forallt

u(0,z) = p(z)

on the time interval [0,T] for some T > 0 with ((t) continuous. Then the limiting

function U in Theorem 12 satisfies V(z,t) = u(z,t) fort € [0,T].
4.3 Generalization of DeMasi et. al. Results

We use the same notation as in the previous chapter, letting X (¢) represent the
system of N particles at time ¢. Then define R(0) to be the reflected initial config-
uration, with each particle strictly below 0. That is, R;(0) = —|X;(0)| for all i. We
couple X (t) to R(t), a system of reflecting BBMs by letting Ry (t) = —| Xy (t)] for all
particles k£ and all times t.

Notice that R(t) has the same law as a system of N branching Brownian motions re-

flected at 0, with selection at the leftmost edge, where the initial location of particles
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is chosen according to the density p

v )2p(x) <0
pla) = {0 re (4.4

The particle selected at branch time 7 in X is coupled to the particle at the leftmost
edge of R(7), because the selection choice only depends on the relative absolute value
of the particles’ positions, not the sign of the position. Therefore, the law of selection
in the reflected system is selection according to the fitness function V(x) = x.
Similar to Chapter 2, we will choose to couple a system of reflecting BBMs subject
to selection to a free system of reflecting BBMs, without any selection. Whenever
we do this, we will do so by letting the coupled particles use the same Brownian
increments and coupling the birth times. To be precise, suppose we want to couple a
free system of branching Brownian motions, S(t), to R(t), each a system beginning
with N reflecting BMs, but R(t) having selection and S(t) being free. Then for each
1 <7< N, we have R;(t) defined by

dR;(t) = dB;(t) — dLE(t)

for some Brownian motion B;(t) and a unique local time process
LE(t) = lim. 0 & [ 1{zx — ¢ < Bi(s) + 7 < +¢e}ds, with 7, = R;(0) € R™. The

coupled particle in S(t) is defined by
dS;(t) = dB;(t) — dL7 (t)

with B;(t) the same Brownian motion used in the definition of R;(t), but with S;(0) =
s; € R™ not necessarily equal to r; and therefore LZ(t) not necessarily equal to
L7 (t) = lim._yo o fg 1{x —e < B;(s)+s; < x+e}ds. When selection occurs in R(t),
we mark the corresponding particle in S(¢) as removed, but allow it to continue to

branch using an independent reflected BBM. At each branch time, particles must be
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relabeled appropriately to maintain the ordering. We use the labeling procedure of
DeMasi et. al. and do not give a description here. See [11] for full details.

Using this method of coupling for reflected BM is important because it maintains
the monotonicity of the system; that is, if S;(0) > R;(0), then S;(t) > R;(t) for all
time (and vice versa) when S; and R; are coupled particles. If one system has fewer
particles than the other, the coupling is the same, but there will be particles which
are not coupled between the systems. If the free system has more particles, allow
those particles to behave as independent reflected BBMs. If the selection systems
has more particles, the extra particles will not be coupled to particles in S(t).

In [11], the proof proceeds in the following way. First, the system is coupled to
a upper bounding process and a lower bounding process. The upper and lower
processes are obtained by strategically enforcing selection only at times kd, where
the length of the time interval, ¢, is fixed. They show the leftmost edge of the particles
remains between the leftmost edge of each of the coupled bounding processes. Then
it is shown that in the limit as N — oo, the position of the leftmost edges of these
bounding processes converges to known upper and lower deterministic boundaries.
Finally, they show that as 6 — 0, the two deterministic boundaries converge to the
same limit. Because of the coupling, we can say that the true hydrodynamic selection
boundary also converges to that limit. Then all that remains is to show that the
density converges to the solution of the desired free-boundary problem.

For the intermediate results, the proofs from [11] translate directly. This is because,
as pointed out above, when we couple X (¢) to a system of negative reflected BBMs,
the fitness function becomes V(z) = =, as it is in [11].

We define the following ordering between particle systems, which allows us to pre-

cisely define an upper and a lower bounding stochastic process.

If X(t) = (X1(t), Xa(t), ..., Xn(t)) and Y () = (Yi(t), Ya(t), ..., Yas(t)) with M >
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N, then we say that

X(t) 2Y(t) ifandonlyif |XN][a,00) <|Y(t)N]a,o0)

Stochastic Bounds We define the two bounding particle selection systems.

Upper Bound Process Fix § > 0. We will define an upper-bounding process U° (k§) =
{U?(ko)} iteratively for k € N.

Define U%(0) = R(0). Assume that U°((k — 1)§) is defined. Let S°(t) be a free
reflected BBM coupled to R(t) with initial particles positions U°((k — 1)§). At time
t = kd, we select the rightmost particles in S°(8) to include in U°(k¢), removing the

rest. Therefore, there are only N particles in U°(kd) for all k € Z. That is,

U (k) = {SI(07) | #450 | $3(67) > S¥5))} < N} (4.5)
where
US(ké™) = im. Ul (t) (4.6)

To understand why we call this an upper-bounding process, suppose that U°((k —
1)0) = R((k — 1)6). Between the selection events, the particles will remain ordered
because two reflected BMs which are coupled through the Brownian increments do
not intersect, except possibly at © = 0. If a particle in R(¢) jumps during the time
increment, then it moves to become coupled with a different particle in S°(t—(k—1)J).
This implies that the particle systems remain ordered between the kd times. At
t = kd, we choose the N most fit particles from S%(6~) to keep. Therefore, since
SO(t — kd~) = Rys-, we have that U°(kd) = R(kS). Through the iterative definition
and the fact that U°(0) = R(0), we can see that U°(kd) = R(k6) for all k € N.
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Lower Bound Process We can also create a process which bounds R(t) from below.
We define D?(kd) in a similarly recursive manner. Let D?(0) = R(0). Again suppose
that D°((k — 1)) is defined.

In the lower bounding process, selection for the time increment ((k—1)d, k6] happens
at time (k—1)d, rather than at kd as in the upper bounding process. Again we couple
to R(t) a free reflected BBM Ss(t). To determine which particles are kept in D°(kd),
we remove particles from left to right such that, after being allowed to evolve freely
for time &, the number of particles in D°(kd) is less than or equal to N. To define
this precisely, let

D°((k=1)9)]
Lie_1ys = min{ a € D*((k — 1)) ‘ 3 NiL{S5(0) 2 a} < N
=1

where N}, is the number of offspring of Ss;(0) alive at time 6. With this barrier

defined, we can define
D (k8) = { 5:(0) | $5:(0) = Lis1ys (4.7)

where we have abused notation slightly in the standard way by allowing S;,;(0) to be
the position of the ancestor of the particle Ss;(0) if the particle is not alive at time
0. Because we remove particles at time (k — 1)d based on the behavior at kd, we
remove entire families of particles, rather than a single particle at a time as we did
in defining the upper bounding process. This means that D° can have fewer than N
particles contained in it.

There are some technicalities to be aware of when defining the coupling at jump
values for the lower bounding process. See [11] for a careful description of the label

reassigning that must occur to maintain the appropriate ordering.
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Deterministic Bounds 'To define the deterministic barriers, let the heat kernel for

Neumann boundary conditions at z = 0 (the reflected heat kernel) be defined as

0
1 2 2
Guu(x) = / (e_(”_y) /2 o= (@ty) /2t> u(y) dy (4.8)

—oo V21t

and define the cut operator to be

Cru(z) = u(x)l {/0 u(y) dy < m} for . <0 (4.9)
From there, define the upper deterministic barrier to be
Ditp=p and DYFp= (Cie®Gs)*p (4.10)
and the lower deterministic barrier to be
Dy p=p and D)y p=(e’GsCos)"p (4.11)

Notice that these behaviors mirror the selection behavior of the upper and lower
stochastic bounds described above. That is, in the upper bound, the process is
allowed to evolve and grow to size €°, then is cut back down to mass 1. This is
repeated for each increment of time §. For the lower bound, the process is first cut

to size e79, then allowed to evolve and grow to size 1 in an increment of time 4.

4.4  Proof of Theorems 12 and 13

Proof of Theorem 12. With this setup, the proofs in [11] translate directly. In par-
ticular, we can use [11, Theorem 1] to say that for every ¢ > 0, there is a density

function W(-,t) : R — R* such that for any a € R,

lim al (dr) = / T(r,t) dr a.s. and in L' (4.12)

N—oo a

where i} = + SN | OR,() is the empirical distribution of R(t).
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We also know from [11, Theorem 2|, modified to accommodate reflection, that this

(-, t) coincides with the solution to the free boundary PDE, (u(-,t),((t)) for t < T,

1

(x,0) = pfor z > Ly and @(x,0) =0 for z < Lo,

. (4.13)

a(f(t),t) =0 and /z(t) (x,t)dr =1

u,(0,t) =0 t>0

where Ly is defined as the largest value such that [ LOO p(z)dx = 1.

Now that have applied these theorems to the reflected version of the process, we
must unfold the process back to R to make the necessary statements about pl.

We will show that pN (I7) — ul¥(I) — 0 for any interval I C R~ and corresponding
positive interval I+, defined as the interval such that x € I't if and only if —z € I.
This, combined with the application of the results from DeMasi et. al. [11] above
will be enough to prove the desired result.

Given a realization ;Y (dx) of the process, we define the random variables FJ,(t), the
families at time ¢. We say that two particles X;(¢), X;(t) are in the same family if and
only if they have a common ancestor and neither X; nor X; has hit 0 since the time
of the most recent common ancestor. There are at most N distinct families F(t).
See that if we let F(t) be collection of particles in the underlying free BBM which
are descendants of particle X (0), then there is a function x on {1,2,..., N} such
that |Fy(t)| < |F)(t)]. That is, we can stochastically dominate the distribution of

maxy |Fy(t)| by the distribution of maxy—; . n Hy, where each Hj, is an independent

-----

Geo(e™") random variable. This gives us the following lemma.

Lemma 14. Fiz a time T > 0 and a constant o > 0. Then there exists a constant
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C such that

- | F(T)|
> e
P (mz?x Cln(N) = 0

Proof. Let F(T), F(T) be independent Geo(e~") random variables. Then
P(max |F(T)| < aCln(N)) > P(max |F.(T)| < aCIn(N))
N ~
= [[PUF(T)| < aCn(N))
k=1
. N
= (PUE(D)] < aCin(N)))
We want to show that this right hand side goes to 1 as N — oo. That is equivalent
to showing that
Nln ([P(|F(T)| < aC ln(N))> =0
as N — co. Because |EF(T)| < Geo(e™T), we know that
1— (1 o e—T)aCln(N) < [P(‘F(T)’ < e IH(N)) <1-— (1 . e—T)aCln(N)+1
Let z = (1 —e™T)* and notice that 0 < x < 1. Plugging in, we have
Nln(1l — 2™y < Nln ([P(|F(T)| <aC ln(N))> < Nln(l— (1 — e T)zCm)

N(=2)) < Nn (P(IF(T)| < aCIn(N))) < N(=(1 = e T)aM))

We can write z = e~? for some b, which allows us to write 2¢") = N=Cb_ Pick
C' = 3/b and we see that
N-N3<Nh (u>(|F(T)| < aCln(N))) < - N(1—e N3

! ; (=)
= <N (PUF(T)| < aCm(N))) < =
Taking N — oo, we get the desired result. [
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In fact, because the bound we proved decays to 0 so quickly, we can in fact apply

Borel-Cantelli to say that limsupy_, m maxy | Fi| < o a.s. as well.
We now prove a lemma regarding the convergence of the different between the mea-

sure of I and It a.s. and in L'.

Lemma 15. lim p (1) — puN(I) =0 a.s and in L'
—00

Proof. First we show the L' convergence. Let I C R~ be an interval and I be the
reflection of that interval to RT. Define F; as the number of families in interval I
at time t, N; as the number of particles in I in the reflected system at time ¢, and
My = maxy_1,_ p, |F)| to be the maximum family size in interval I at time ¢ in the

reflected system. Then we have that

1i My <
msup ———— (e}
NP C ()

almost surely for some C'. This means that for any fixed € > 0,
P(M,, < eCln(my) for allm > N) — 1

as N — oo (while this may seem like the introduction of new random variables,
M,,, m; are just defined as the random variables My and N; with N = m). Let &

be i.i.d. uniform on {—1,1}. Now define

L J Fy
Yy = ¥ Z | Fe|& = Zakfk
k=1 k=1
which is equal in distribution to the difference between the measure of I™ and I

under 4, with az = £t We want to show that Yy goes to 0 in L'. We will in fact
Hy N g

show that it goes to 0 in L2.
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We see that

.
EY ] =E > ap+> akajgkgj]

| k=1 ktj

because &, §; are independent.

Now suppose we define Y to be the random variables obtained by merging families
together until each group has at least eC'In(N;) members and has no more than
2¢C'In(N;) members; the last group may have less than eC'In(N;) particles if there
are not enough particles left. Grouping in this way is possible if M,, < eC'In(N) (an
event which has probability 1 in the limit). Therefore, we can create the random

variable Y, where
G
Vo= aré
k=1

where again each & is chosen 1.i.d. uniformly from {—1,1}. Let B be the event that

My < eC'lIn(N). Then Y, has variance

_GI GI
EY]=E|> a | B|P(B)+E|) a; | B°| P(B)
LEk=1 k=1

<E (C+(N>+1) (_%Cﬁ(m))?

P(B) +1-P(B°)

P(B) + P(B°)

[ 4C'In(N;) L (2:CIn(N) 2
= N, N

Notice that because of the almost sure bound we have on My, we know that P(B¢) —

0as N — co. So Var(Y,) — 0 as N — oco. But in fact, aj, = a¥ +- - —I—afl(k) for some
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n(k). But (@)® > (ah)? + -+ + (aky))? 50
Var(Y,) < Var(Y,)

for all n. Therefore, E[Y;?] — 0 as n — oo as well and Y,, converges in L? and so also
converges in L! as desired.

Next, we want to show that pl¥ (I7) — ul¥(I) — 0 a.s.

Consider an interval [ with I C R~ and |, \I~l(:v,T) dr = Cr > 0. Again we let N; be
the number of particles in I at time 7T'. Clearly, this is a function of N and N; — oo
a.s. as N — oo. Divide these N; particles into groups of size C'ln(N) without
splitting up any families. In order to keep families together, we have to allow for
small error; that is, the sizes can be C'In(N) + ¢ for ¢ = o(In(N)). We know that
the number of families of size 1 grows at least like =7 N;, and using these small
families allows us to make these groups the appropriate size once N is sufficiently
large. There will be G total groups with G = O(N;/In(N)). To each of these groups,
assign a random variable & which is —1 with probability 1/2 and 1 with probability
1/2. This variable will indicate whether the group belongs on the positive side of
the axis or the negative side of the axis. After assigning each group an &, we can
calculate Sy = % Zle |G|k, where |G| is the size of group Gy. This random
variable is the difference between the number of particles assigned to the right and

the number of particles assigned to the left, divided by N.
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As N — oo, we can see that

G

. .1
dim, S = Jim, 57 ) [Gulé

< lim %(Cln(N)—l—a)

N—o0

&k

bl
gl

G

_N; 1

< lim ==Y g
k=1

~ N—oo N G

=0 as. and L!

by the law of large numbers (since G — oo as N — oo and the & are all independent
with E[&] = 0).

This is not quite enough however. Notice that S # p (1) — ul¥(I), because each
family was not assigned a side independently. However we make the following claim:
Claim: Any additional independent assignments will make make Sy closer to 0
with probability p > %

That is, suppose we pick a particle uniformly at random from the N; particles.
Suppose the selected particle is in group Gg. If the number of families in G}, is at
least 2, then we pick a family in G} and assign it a new & and separate it into its
own group. This action has a probability p > 1/2 of making the new S}, closer to 0.
To see this, suppose Sy > 0. There are more particles assigned a +1 than particles
assigned a —1. Therefore, we are more likely to select a family which is assigned an
&r = 1. Reassigning a family in that group will either keep Sy the same or increase
the number of —1 assignments by reassigning a family to —1. Therefore, this will
move S’ closer to 0 than Sy. If a group assigned a —1 is selected, then S} will either
equal Sy or be farther from 0. Because choosing a positive is more likely, there is
a greater probability of moving the sum towards 0 with each additional assignment

than away from it.
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We can repeat this process until all families are assigned an independent &;. Because
the number of families goes to infinity as N — oo, the number of reassignments that
are needed will get large as N gets large. Therefore, the probability that the true
sum p¥ (I7) — p¥(I) is closer to 0 than Sy approaches 1 as N — co.

This allows us to say that ul¥ (1) — uN(I) — 0 as N — oo a.s. O

Therefore, since p¥ (IT) + p(I) — C; a.s. and in L' and the previous lemma tells
us that ¥ (1) — u(I) = 0 a.s. and in L', we know that pY(I) — < as. and in
L'. This means that the mass in any interval I is evenly split between the positive

and the negative axes. This gives us the desired result: if

W(x,t) <
U(x,t) = {@(2—@; 5 z=0
T7 x>0

then

a

lim uiv(dx):/ U(z,t)dr

N—oo J_

almost surely and in L! for all a € R. This concludes the proof of Theorem 12. [
The proof of Theorem 13 is essentially one line.

Proof of Theorem 13. All that remains to prove this theorem is to say that because
T solves the reflected free boundary problem, wherever such a solution exists, then
U(z,t) solves the desired free boundary problem on all of R. This is clearly true
because the initial conditions were chosen to be symmetric and the heat equation is

symmetric, so ¥(z, t) matches the solution to Equation 4.3 wherever one exists. [
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5

BBM with Branch Rate Interaction via the
Empirical Measure

5.1 Introduction

In this chapter, we study a BBM where the particle interaction occurs through the
branch rate of each particle. We allow the branch rate of each individual to be
a function of the empirical measure of the process, smoothed through convolution.
Defining a branch rate which depends on the empirical measure creates a nonlocal
effect; particles are affected by the entire configuration. We say that the interaction
between particles is weak because the influence of a single particle is on the order

1/N, where N is the number of initial particles.
5.1.1 Related Work

McKean-Viasov SDEs Allowing particle systems to interact through the system’s
empirical measure is well-established. Historically, the interaction has been included
in the drift and diffusion terms in an interacting system of SDEs. In this case, taking
the hydrodynamic limit results in a solution to a McKean-Vlasov stochastic differ-

ential equation. This problem and its generalizations have been studied extensively
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(see for instance [19, 20]). In 1989, Oelschlager looked at a multitype branching pro-
cesses in which the dependence on the empirical measure is present in the branch rate
of the particles [21]. He considers the system with moderate interaction strength,
where the birth, death, and type transition rates of a single particle depend upon
the other particles in a neighborhood whose volume goes to 0 as N goes to infinity,
but which contains infinitely many particles as N goes to infinity. This is in contrast
to a weak interaction, where the neighborhood of interaction has a constant size. He
proves a hydrodynamic limit of the system to a general system of reaction-diffusion
equations. He claims, but does not show, that his results can be extended to the
case of long-range interactions between particles (i.e. weak interaction).

In this work, we show the corresponding theorem for weakly interacting branching
Brownian motions; however, we restrict to one type, rather than a multitype system.

We will show this for a class of rate functions, described in Equation 5.2 below.

Discrete Process with Mean-Dependent Rate 'The motivation for this problem, how-
ever, came from a different perspective. In particular, while the work done below is
for a positive, bounded, and Lipschitz rate function A, our interest in the problem
stems from one particular rate function which corresponds to the following behavior:
particles in front of the average position, call it M;, branch at an instantaneous rate
X (t) — My, while particles behind the average position die at a rate M; — X(t).
This model can be thought of as a continuous version of a model introduced by Yu,
Etheridge, and Cuthbertson [23]. In this paper, Yu, Etheridge, and Cuthbertson use
a Moran model to study populations whose fitness is evolving on Z. A particle’s
fitness can change via mutation (to the fitness above or below their current level),
via selection (where individuals of higher fitness replace those of lower fitness), and
through resampling (where an individual replaces another at a constant rate regard-

less of fitness). The discrete setup avoids many of the difficulties which arise in the
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continuous time version. In particular, the fitness of the particles does not continu-
ally evolve and the birth and death events are coupled together in the selection and

resampling events. Therefore, the number of particles at any time is fixed.
5.1.2  Contribution and Difficulties

Despite being motivated by the study of a system where the birth and death rates
are proportional to the distance from the mean, the proofs below do not encompass
the choice of A, ® that is required in this case; we cannot yet prove the result for
the motivating example. While we extend the discrete model to the case of particles
whose fitness evolves continuously and allow for a changing population size, we have
restricted our study to a bounded, positive rate function. We would need to allow
the rate to be negative and unbounded in order to make statements about a system
in which the birth and death rates are proportional to the particle’s distance from
the mean. There are several considerations to take into account before extending to

a negative or unbounded rate function.

Incorporating death rates Incorporating particles dying can be done by allowing the
branch rate to be negative and interpreting negative branch rates as death rates. In
this case, one must consider the possibility of the system becoming degenerate at
some time. In the case described above where the birth/death rates are proportional
to a particle’s distance from the mean, the system will reach a state with only
one particle remaining with probability one. This particle will then continue as an
independent Brownian motion and no longer branch. One approach to overcoming
this difficulty could be to make the claim that the probability of reaching this state
before a fixed time T should go to 0 as N goes to infinity. After verifying this, the
proof of proving the hydrodynamic limit on the time interval [0, 7] would be similar

to the proof presented here.
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Incorporating unbounded rate functions Unbounded rate functions present more of a
problem than allowing particles to die. At several places in the proof of the theorem,
we rely on control of the number of particles alive at time ¢. This control is obtained
by using the maximum branch rate as an upper bound on the true branch rate. This
technical difficulty perhaps less daunting than the second difficulty introduced by
unbounded rates. Such a generalization also introduces the possibility of finite time
explosion of the number of particles (see [5] for one treatment of finite time explosion
in a noninteracting system of BBMs). Ensuring that there is no finite time explosion
of a system with unbounded branch rates would require substantially more delicate

analysis of the large deviation events of the process.
5.2 Formal Problem Statement

Let X1,..., Xy be a collection of N binary BBMs. Allow their initial positions to be
independently distributed with density p. We let A; be the collection of the indicies

of particles alive at time ¢ and define

1
py = ¥ > dxa (5.1)

ucAs

to be the empirical measure of the system at time t.

Particle X,(t) splits into two at an instantaneous rate A(X,(t), u), defined as

e ) = @t~ pyuta) (52)

for positive, bounded, and Lipschitz A : R — R and ® a smooth, compact function.
Notice that A is continuous in both z and p (see Appendix A for these details). For
notational compactness, A(z, [¢¥]) will be written A(x) unless we need to explicitly

draw attention to the measure dependence, and we will use % to represent convolution.
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Notice that, unlike previous chapters, the index of a particle does not indicate any-
thing about its position relative to other particles. As such, we will use the Ulam-

Harris notation in this chapter to refer to the index of particles.
5.3 Main Result

Our main result is the associated hydrodynamic limit and the description of the
limiting object in terms of a solution to a reaction-diffusion equation. We make the
following hypothesis:

Hypothesis 1: For some time T > 0

u=Au+APxu)u zeRE>0
(5.3)
u(z,0) =p(z) xze€R,t=0

has a unique Cy°([0,7T] x R, R) solution.
Theorem 16. Let X be a collection of N binary BBMs with rate A\ as defined in
Equation 5.2 and the initial positions of each BBM chosen i.i.d. according to a
density p(x). Suppose Hypothesis 1 is true. Then the empirical measure of X has a
weak limit in D([0,T], M1 (R)):
lim ;" (dx) = puy(dix) (5.4)
N—o0
Additionally, if u(x,t) is the unique solution on [0,T] to the equation
uy = Au+APxu)u z€RLE>0
u(z,0) =p(zr) z€RLt=0

Then p(dx) = u(x,t) dz on this time interval.
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5.4 Proof of Hydrodynamic Limit

The proof of the hydrodynamic limit in Theorem 16 proceeds in a fairly standard
way. First, tightness of the sequence of probability measures is proven in the space
D([0,T], M). Then the limit of a convergent subsequence is identified as the weak
solution to the PDE. Last, uniqueness of the subsequence limits follows from the
uniqueness of solutions to the PDE and then applied to give an overall limit of the
empirical measures. An example of this in the simpler case of BBM is shown in

Appendix A.
5.4.1 Tightness of the measure-valued processes

Let vy be the law of p¥ on the space of functions D([0,T], M), where M, is
the space of positive, finite measures on R. Also define Cy(R,R) as the space of

continuous functions which decay to 0 at co and —oo. For a function f € Cy(R,R),

we define 7wy : D([0,T], M) — D([0,T],R) in the following way

wyn= | 1) utao (5.6)

We will prove tightness in three steps. First, we will show that for f € Co, {mpul}
satisfies the Aldous condition, defined below. Then we will show that in fact this
collection {7 ;u } y is tight in D([0, 7], R). Finally, we will apply a theorem of Roelly-

Coppoletta which says that this is enough to get tightness in the space D([0,T], M).
5.4.2  Aldous Condition
The Aldous condition can be stated as follows [16]. Let Y, be a real-valued process.

Definition 17. [Aldous Condition] For all € > 0,17 > 0 there exists a § > 0 and an

integer ng such that for any family of stopping times {7, }, with 7, <T

sup sup P" (|Yo (7, +6) = Yo(7) >1n) <¢ (5.7)

n>ng <9
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Lemma 18. Let f € Cy. The processes Y = mpui’ satisfy the Aldous condition.

Proof. Fix e,n > 0 and a collection of stopping times {7,} with 7,, < T. We first
pick an @ such that P(N,, > N(e”" 4 a)) < £ for each 7,, with My = [|A]|« the

maximum of the rate function. It is clear that because each of the particles X, is

N
branching with a rate bounded by My, N; < Z GG1, where the G,’s are independent
k=1

and G), < Geo(e M), Noticing that the variance of this sum is O(N), we apply

Chebyshev’s inequality:

N
P(N-, > N(e!" +a)) <P ( > G — N | > aN)
k=1
< eQMAt(l _ e—MAt) (58)
- Na?
Q2MAT
<
— Na?

Therefore, we can choose an a large enough such that

02MAT c
<

Na? 3

which implies that

P(N,, > NMy) <

[GSENO)

MAT

where we have defined My = e + a. Therefore, we can focus on bounding

P(|Yn(t+6) — Yn(t)] > 1| N, < NMy)

for any time t.
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Expanding this difference slightly, we see that

Y (t+0) — Zf JEH0) = X))+ Y f(Xu(t+0))

u€Ay ’U,EAH_Q\At

<—Z|f JE+0) — FX)+ ) (Xt +0))]

ucAy ILGAH_Q\At

(5.9)

All of the particles in the first sum are independent in the time interval ¢ to ¢ + 6
because any particles born during that time interval are addressed in the second sum.
Using the same argument we used to bound V;, we can pick a §; small enough and

no large enough that

P <Nt+51 - Nz ] ‘ N, < NMN) (5.10)

€
3
for all N > ng, with M = ||f||ec. Using this bound, for N > ny and 6 < ¢§;, we see

that

% Z |lf(Xu(t+0))| < %(Nt"r(;l — Ny) My

uEAt+9\At

M, (5.11)

N3

N
My

ol e

Because f € Cy, for each u € A; there exists a Ax,, such that if | X, (t) — y| < Az,,
then |f(X,(t)) — f(y)] < ﬁ Define Ax = minge 4, Az, and pick do small enough

such that if we define

s=P < sup |B(s)| > A:c)

0<5<d2

for B(s) a BM started at 0, then s is small enough that

sNMy <§
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This choice ensures that if F is the event that all particles alive at time ¢ remain

within Az of their starting position in the time interval (¢,¢ + dz), then

p (E

N, < NMN) < Z P(X, leaves a Az interval)

u€As

S SNMN

<

Wl M

If all V; particles remain within Ax of their initial position during the time interval,

then

1 1
—;ﬁu ult+0)) = F(Xu)] < FN My

i
2

Choose 0 = min(dy,ds). The inequalities above show that for § < 6 and N > ny, if
Ny < NMpy, Nipg — Ny < Mifg and each of the NN, particles stay within Az during
the time interval (¢,t + 6), then

Ya(t +6) — Yy ()| < g+g=n (5.12)

Therefore, the only way that |Y,,(t+6) — Y, (t)| > n is if one of these conditions fails.

But by making each of these events sufficiently unlikely, we have ensured that

N e € ¢
[P<{Nt2NMN}U{Nt+9_Nt>T]\ZC}UEC> <§+§+§

=&

(5.13)

This shows that {Yy} satisfies the Aldous condition. O

Now, we will use the fact that the processes Yy satisfy the Aldous condition to show
that the laws of these processes are tight in D([0, T, R).
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Lemma 19. Let f € Cy. Then {mpul}n is tight in D([0,T],R).

Proof. From [16], we know that tightness of the processes Yy = 7sul follows from
two things: that the processes satisfy the Aldous condition and that for a dense
subset of times ¢, {Yn(t)}n is tight in R. We already know that the processes satisfy
the Aldous condition by Lemma 18.

To satisfy the other condition required for tightness in [16], we need to show that
for a fixed ¢, the {Yx(t)}y are tight. This must hold for a dense subset of times in
[0, T, but in fact we will show it for every value of ¢. Fix a time ¢ and an € > 0. We

are looking for a compact set A C R such that
P(Yn(t) € A°) <e
As before, we pick a large enough that
P(N, > N(eM 4 q)) < e
Define My = et 4 g and pick
A = [min(Mymy,0), My M|
where My = max, f(z) and m; = min, f(z). It is clear that if N; < NMy, then

Valt) = = 3 F(X()
1

—N,M
N

IN

1
< —NMyxyM
SN Ny

— My M;
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If f >0, then it is clear that Yy (¢) > 0. If f(z) < 0 for some z, then we see that

Valt) = - S FX(0)

uEAs

1
> —N,
=N tMy

1
> —NM
=N Ny

= MNmf

So the P(Yy(t) € A°) < P(N; > NMy) < e. Therefore, at each time ¢, the law on R
is tight.

This guarantees that the processes {Yy} are tight in D([0, 7], R). O

Finally, we are ready to make a statement about the tightness of the measure-valued

processes.

Proposition 20. The measure-valued processes {ul }n are tight in the space

D([0,T], M).

Proof. By Lemma 19, we know that the processes mpuf" are tight in D([0,T], R) for
any f € Cy. This means that for a dense collection {fy} C Cp, we can say that
the collection {7, pi¥ }n is tight in D(]0,7],R). We apply Theorem 2.1 in [22] to
state that this tightness implies tightness of {uY}y in the space D([0,T], M) as
desired. ]

5.4.83 Characterization of Limit Object

By Prokhorov’s Theorem (see Appendix A for a precise statement), tightness of the
processes pl¥ is equivalent to being pre-compact in the weak topology; that means
that every sequence has a convergent subsequence. We want to describe these limit
objects by how they act on test functions. If the limit is the same for every convergent

subsequence, then in fact the entire sequence {uY} converges to that limit.
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We now consider p¥ applied to a test function.

Let ¢ € C°(]0,7] x R,R) be our test function, A; be the set of particles alive at
time ¢, and NV; = |A;|, the number of particles alive at time ¢. Also define 7, to be
the birth time of particle X,. Let us abuse notation slightly by letting {uM}x be

some convergent subsequence, rather than the more tedious notation {,ut *}. Then

we have
</¢mut (dx) /¢Ox,u0dx) D ot Xu(t) = Y (0, X,(0)
u€EA; u€Ag
(5.14)
By Ito’s formula, we get that this equals
= 6t Xu(t) — O Xu(r)) + D 61, Xulra) = Y 6(0,X,(0))
u€A; u€As u€Ag
—Z/ (5, X)) + uels, Xols ds+/ bu (5, Xu(5)) dX(5)
ucAs
(5.15)

+ > (7 Xu(ra) — Y 6(0, X,,(0))

uEAL u€Ap

= Z /0 (o + %Qﬁm)]l{m < stds+ M, + Z O(Tur Xu(Tu))

u€EA; u€EA;
Tu>0

with M; =3 4, th ¢, dX,(s) a martingale. We can rewrite the sums as integration

against singular measures in the following way

Je ot 2) Y (d) — [ (0, 2) i (d) fOf[R Gt + 50aa) dﬂévd5+fofne¢d77 (z,8) + &
(5.16)

with dn™(z, s) a singular measure on (0,¢] x R.

We want to be able to take a limit of both sides to be able to show that p;, the limit

of this subsequence, satisfies the weak formulation of the PDE in Theorem 16. That

is, we hope to show that the limiting object u; satisfies the equation
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(¢, 1s)|o = /Ot/[R(@‘i‘ %¢zz)dﬂs ds+/0t/[Rq§(s,x)A (/[R O (x —y)us(dx)) s (dz) ds

(5.17)
where (¢, ul') = [ ¢(z, s) pll (dz). We will deal with the limit of the terms in Equa-
tion 5.16 separately. Note that eventually we will want to show weak convergence of

5.16. However, some of the limits will be shown in L? instead, which implies weak

M,
convergence. The first term on the right which we address is —.

Lemma 21.

M,
lim Wt =0 in L? for allt.

N—o0

Proof. Consider Var (3t) = -LE[M?].

5> ([ ontena >>dX<>)2
+ 3 (/ b(8, Xo(5)) dXo(s )) (/T:%(S,Xu(s))qu(S))

E[M/] =

=

:[E-ueA </¢xsX ))dX()ﬂ

+EM€At</¢msx }) X, ( )(/mx <>>
B

-O+®

Consider term @ first. We are summing over pairs of particles alive at time t.
Clearly particles from different lineages are independent, so those expectations can

be multiplied and contribute nothing to the sum.
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For particles X, X, from the same lineage, we note that because we are only sum-

ming over a particle from its birth time until ¢, the only dependence between these

particles is their starting point. Because they have independent increments, their

[to integrals are independent.

expectation is 0. So @ = 0.

Therefore, we once again multiply to get that the

Now we focus on finding @ Because each of the NV initial lineages begin distributed

according to p, they are identically distributed, so we can do the following:

E[M?] _E[

()

uE At

= NL

ueFy(t

Pz (X

<s>)2]
(/ Bu(Xi(5)) dXi(s >)2

where Fi(t) = {u € A, | (1) < u}. We can change these integrals to have the bounds

0 to t, by a slight abuse of notation which allows X, (s) to refer to the ancestor of

X, (t) alive at time s < 7.

E[M}?] < NE

< NLE

where the last equality is by the many-to-one lemma. Let My = ||A||» and My, =
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[|¢2]oo-

E[M?] < Ne'™E (/ |62(B(s))| dB(s ))2]

= NeMM[E /Ot ¢2(B(s)) ds}

< NeMAthz)zt

where we have used [t0’s isometry to get the equality in the second line. Therefore,

M, eMat\f2 ¢
Var <—t) < RN SN

N N
as N — oo.
Therefore,
lim M _ 0 in L?
N—oo
for all ¢. O

5.4.4 Point Process Martingale

The next term we consider is the integral against the point process ", from Equation

5.16. Recall that

//qbdn z, ) Zmu, Tu) (5.18)

ueA
T >0

We will show that in the limit, this term goes to

/ot /rR éls,2)A (/[R Oz - y)ﬂs(dﬂf)) ps(dz) ds

which is the final term in Equation 5.17. We do this by introducing a martingale

which will make this convergence clear.
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Lemma 22. Let ¢ € C§°. Define

//cédn z,s) / > (s, Xuls)

uEA;

Then M, is a martingale.

Proof. To show this, we fix a value s and define the random variable

f(t) = E[M;" = M| F{]

(5.19)

(5.20)

We will show that f’(¢) = 0 for all ¢ > 0. Since f(s) = 0, this will show that f(¢) =

for all t > s.

We will use the definition of the derivative:

F0) — tim L) = 1)

h—0

uEAs

*iﬂ%N—h[

[E{ ST 6(r Xu(m) / S 6(s, Xuls)

u€A 4 p\ At uEAs

We will work first on simplifying

[E Z ¢(Tu7Xu(Tu)) ‘Ft

'U,GAtJrh\At

h
t+h t+h
—}L%hml/ /gbdn z, ) / 1Z¢3X X.u(s))ds

fs]

Xu(s))ds| Fy

Fs

(5.21)

It will be more convenient to talk about these birth events in order, so we let 77 be

the jth birth event after time t. To avoid having to indicate which particle it was

that branched at time 77, we will abuse notation slightly and write X7 to reference

the particle that branched at time 77. Then Equation 5.21 expands to
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= Elp(r', X (#")1{r' <t +h}|F] + L

Z¢ 7'] X/ 7‘3 ]1{TJ <t+ h}F
7j=2

]

(5.22)

-D+®

Looking at @, we can see that it is of order h?:

E [i o(m7, XI(T)1{r <t + h}HF| <||¢]|E [i 1{r7 <t+h} ]—“t]

We know that the kth branch time of this process can be dominated by the kth
branch time in a BBM with rate My = ||A]|, so if 77 is the jth branch time in a

process of Ny BBMs with rate My, then we have

16| E [Z 1{r7 <t+h} ft] < |[@llE | > 1{7 < h} f]
j=2 Lj=2

= ||}]|ocE | Ny — N; — 1{7* < h}

4

= 1|¢|[0 (Nie"** — N, — P(> 1 birth))
= [|9[|oc (NeMph + O(h?) — (N;Mph + O(h?)))
= ll¢ll<O(h?)
where N, is the number of particles alive at time h in the rate M, process of N,

BBMs.

To determine @, we will first determine

E [szﬁ(fl,Xl(Tl))

Ft, Wt+h] (5.23)

75



where Wy, is the o-algebra generated by the paths {X,(s)}yea, for t < s <t+h.
This provides extra information, but does not entirely determine the expectation
because the o-algebra does not contain any information about the branch times of
the particles. Conditioned on this information, the distribution of the first branch

time becomes more straightforward.

t+h
E [¢(717X1(71)) ]:t7Wt+h‘| =L [Z / @(s, Xu(s))P(process branches 1st at X, (s)) ds|F, WHh]
uEAs t
t+h
=L Z @(s, Xu(8))P(1st birth by X, at s)P(1st birth by X, after s for all v # w) ds|Fi, Wsn
uc€A; t

=3 [ ) (O g ) (e 0kinae) g
t

u€A;

Notice that each of the terms e~/ XXu()dr — 1 4 O(h) because s —t < h. Therefore,

grouping the O(h) terms inside the time integral, we get

- Z/ (s, X ()M Xu(5), 1) (1 + O(R)) (1 + O(h))MH ds

uEA¢ t

=3 [ e XA )+ Ol ds

ucAs

t+h
— [ 3 s XA ) s+ O

UGAt

Notice that the constant in the O(h?) depends on the paths Xj. This might be
worrying once we are no longer conditioning on W;,;. But because A is bounded
and each X, (t) only appears in the constants in the form A(X,(¢)), we know that

this term is O(h?) regardless. So we have shown that @ satisfies:
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Elp(r!, X' (r')1{r' <t+h}|F] =E [[E [¢(71,X1(rl))1{71 <t+h}

Fos W] |

=E [/t Z B(5, Xu(5))AN(Xy(8)) ds + O(h*)|F,

u€ Ay i
(5.24)
Because @ is O(h?), we can therefore say that
t+h
E| Y o(r, Xu(m)|F| =E [/ > (s, Xu(s)A(Xu(s)) ds| Fi | +O(h?)
uGAt+}L\At ¢ u€A;
(5.25)

This now looks very similar to the term which is subtracted in Equation 5.19. Upon
inspection, the only difference is that in Equation 5.19, the sum is taken over A,
rather than A;. That means that when a new particle is born, the term in M
subtracts off the integral of its path. We have seen already that the contribution of
multiple births is O(h?). Therefore, all that we need to consider is the contribution
of the first birth. We now show that the integral of these contributions is O(h?) as

well.

E [ |3 sl XA

UEAS

u€EA;

Yk [/ o5, X' (s))A(X (s)) ds|

uEAs

(5.26)

t+h
Taking this integral / #(s, X' (s))A(X'(s)) ds and conditioning on the birth time

71

7



71, we show that this integral is O(h?).

4

t+h t+h
<E [/t MAe_MAS/ o(r, X (r))ANX (7)) dr ds

[E[/l 6(5, X1 (s))A(X(s)) ds

(5.27)

4

Bounding each term in the inner integral by its maximum value and evaluating gives
that the expectation is O(h?).
Therefore,

1 t+h
Flt+h) = f(#) = [ |3 s X)) ds

uE At

t+h
- /t 3" 6(s, Xu(s))A(Xu(s)) ds + O(h?)

u€A;

ft] (5.28)

= 0(h?)

From this, we can see that f’(t) = 0 almost surely for all ¢t. Therefore M, is a

martingale as desired. [

In addition to showing that this is a martingale, we need to show that it is well-
behaved. We show in the next two lemmas that the second moment of this martingale
goes to 0 as N goes to infinity. We first show that it has a finite second moment,

and then use this to show that in fact the second moment goes to 0.

Lemma 23. The second moment of M, is finite for allt < T and all N. That is

supE [(M})?] <oo  for all N (5.29)

t<T
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Proof. To show this, we expand and bound the terms in E[(NM;")?].

E[(NM)?] =E ( > ¢(Tu,Xu(Tu))—/ Zaﬁ(s,Xu(s))A(Xu(s))ds) ]
| u€A\ Ao 0 u€As

=L ( Z ¢(Tu7Xu<TU)))]
i u€A\ Ao

25{ > ol Xulm) [ Z¢<S,Xu<s>>x<xu<s>>ds]
uE AN\ Ag 0

uGAs

+E {( /0 > ¢(s,Xu(s>>A(Xu<s))ds> ]

ucAg

-D+@+®

(5.30)

We bound each term separately. For the first term,

(D < E[(|]]]N:)?]
= |||l E[N] (5.31)

< lgl[3 Ve Mt (27 — 1)
We bound @ in the following way.

(@) < 2F [ch»uoozvt /> |¢<s,Xk<s>>A<Xk<s>>|ds]

0 reA,

<oF [Hezsnmzvt - MA||¢>H00N¢] (5.32)

< 2[||[5 MAtE[NY]

< 2||¢| |2 Mpt N2eMat(2eMat — 1)
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For @, we have
() < E [(Mat][6]]oc Vo)
< M3l|o|l2t E[NY] (5.33)
< Mi[|o|[ot” N2eM! (20" — 1)
It is clear that each part of the equation is bounded by C;N? where C; depends on

time but not on N. Therefore, E[(M")?] < C(t), a constant which does not depend

on N. So sup,<p E[(M])?] < C(T) as desired. O

Lemma 24. E[(M}")?] — 0 as N — oo. Therefore,

/ot/ue(ban(x’ s) = /Ot > (s, Xu(s))MXu(s)) ds| = 0 in L2

ucAg

1
Proof. To help with notation, call Z; = N Z O, Xk (7))
ke A\ Ao
From Lemmas 22 and 23, we know that M, is martingale with locally finite second

moment, and therefore its quadratic variation exists locally and

(M)? — [M", M), (5.34)

t
is a local martingale. Noticing that / Z o(s, Xi(s))AN(Xk(s)) ds is continuous and

0 kea,

has finite variation, we can see that

(M, M"), = [Z, Z]; (5.35)

Because Z; is a jump process, its quadratic variation is the sum of the jump sizes.

So we have that

2,2 = > %dﬂ(ru,xu(m)) (5.36)

uEAt\AQ
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Noticing that 5.36 is similar to Z; with %¢2 in place of ¢, we can use the same

argument as in Lemma 22 to say that

7, = Z ]\1[2q§2 (Tus Xu(T0)) / Z ($)A(Xu(s)) ds

uEAt\AO ucAs

_ / S 625, Xu()A(X(5)) ds (5.37)

uEA;

= [M, M], Nz/ZngsX X.(s))ds

u€EAg

is a martingale. In particular, this means that

E [(M7)?] = E[M, M],

[ /2¢st <>>ds]

u€As
(5.38)
< —[E U N MMy ds}
< eMAtMQ%MAt
- N
where we have once again defined My = ||Al|oo, My = ||¢||oo. Therefore, we have our
desired result that for any fixed t,
E[(M)?] -0 inL*as N — o0
And as such,
/(bsxdn S, ) //gzﬁsx z)dpd ds| -0 in L?
[
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5.4.5 A Limit of the Weak Solution Equation

We have now shown that {uN} is tight, that every u¥ must satisfy Equation 5.16,
and have proven almost all the lemmas necessary to take a limit of Equation 5.16.
Now we will show that every convergent subsequence converges to the same limit,
one satisfying Equation 5.17; this would imply that the entire sequence converges
to that limit. Therefore, existence and uniqueness of the limit will be reduced to a
question of uniqueness of weak solutions to the limiting PDE.

We want to show convergence of integrals of the form [, g(z, s) dv, (s, z) and

fg Jr 9(z, ) dvy (s, ) ds for g(x, s) a test function in C§°. To do this, we need to verify
that all the integrals are continuous functions of the measure-valued processes.

As indicated in [7, Chapter 3], weak convergence of the probability measure v, on
the space D([0,T], M) does not necessarily imply weak convergence of v/, the
projection of the measures at time ¢ for some ¢ € [0,7]. In particular, for weak
convergence of the finite-dimensional distributions, we require an additional condition
of continuity, P-a.s., at the selected times. To this end, define 7, : D([0,T], M) —
M, as the projection of the cadlag process at time t: 7, (v) = v(t) and let Tp be the
set of t € [0, 7] such that 7, is continuous except at a set of P-measure 0. It is known
that {0,7} C Tp always. If 0 < ¢ < T, then m is continuous at v € D([0,T], M)
if and only if v is continuous at ¢ a.s. Therefore, t € Tp if and only if P(J;) = 0,
that is, if the probability that the process jumps at ¢ is 0. Because there are no
distinguished times in this process and the probability of a jump at any fixed time

is 0 for each N, Lemma 25 follows:

Lemma 25. Tp = [0,T] for the weakly-dependent BBM process. Therefore, if p¥ =
s as a sequence of measure-valued processes, then uY = p, as a sequence of measures
for all s € 10, 7).

Proof. The fact that Tp = [0, 7] follows from the fact that the 1, probability of a
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jump at time ¢ is 0 for all ¢ € [0,7], and because there can be at most countably
many of these jumps, no jumps can develop in the limit. The statement about the

weak convergence of v/, therefore follows from [7, Chapter 3.13]. O

Lemma 26. Let f: D([0,T], M;) — D([0,T],R), with
fS)(t) = Jpg(x,t)S(t,dx). If g(-,s) € CZ(R) for any s, then [ is a continuous

function.

Proof. Let dy; be the Skorohod distance on D([0,7T], M) and dg be the Skorohod
distance on D([0,T],R). Fix ¢ > 0,Y € D([0,T], M, ). Notice that because g is
smooth and compactly supported, it is Lipschitz and uniformly continuous. There-

fore, we can define |g|; to be the Lipschitz constant for g and d; to be a constant

such that if |t — s| < &y, then |g(¢, ) — g(s,2)| < T Y
b R ’

Let § = min (ﬁ, o1, 5). For any X such that dy,(S,Y) < ¢, we have the following.
By the definition of dj;, there exists an continuous, increasing, bijective function
A:[0,7] — [0,T] such that

sup |t — M| < 4§

= (5.39)
Sup 15(2) = Y (A)|lwass <6
Using that same A, we see that
£5)6) = 1)) = | [ gtt.0)S(t.dn) = [ gre0)Y (3o
< /R o(t,2)S(t, dz) — /[R ot e)Y O do)|+  (5.40)

/[R g(t, 7)Y (M, d) — / g 2)Y (M, dar)

R

Because % is a Lipschitz function with Lipschitz constant 1, we know that by the
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definition of the Wasserstein distance, we have

[ s, -y Onde)| < duts. YO <5 G

Therefore, (5.40) simplifies to

[F(S)(#) = )M < g[Lo + (5.42)

/[R(g(t,x) — g(\t, )Y (At, dx)

Because |t — At| < 0 < 61, we know that |g(t,x2) — g(Mt,z)] < 2supth£}RY(t7dfr)'

Therefore, we get that the last term in (5.42) can be bounded by

€
F9)t) — fF(Y)A)| < |g|o + /Y)\t,d$
1))~ SN0 £ lgled + 5ot [ VOwan
(5.43)
2 2
Notice that this bound is independent of t. Therefore,
sup [F(8)(t) — J(V)(M)] < e (5.44)
Because we used the same A, we know that
sup [t — M| <d <¢ (5.45)

t<T

So by the definition of dg, we can see that dr(f(5), f(Y)) < e. Therefore f is
continuous at Y for each Y € D([0,T], M ). O

Lemma 27. Let a be an element in D([0,T],R). Then h(a)(t) = fot a(s)ds is a
continuous function of a for all t. And therefore, h(a) is a continuous map h :

D([0,T],R) — C([0, T], R).

Proof. Fix an ¢ > 0. Fix a point a € D([0,T],R). We want to show that there
exists a ¢ such that if b € D([0,7],R) is chosen such that dgr(a,b) < ¢, then

fot a(s)ds — f(f b(s) ds‘ < e. Before choosing a 9, we define the following:
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Let a’(s) = SUD|s_y|<s a(8") and as(s) = inf|,_y <5 a(s’). Notice that a’(s), as(s) con-
verge to a(s) as 0 — 0 wherever a is a continuous (and therefore almost everywhere).
Also notice that as(s) < a(s) < a’(s), and that the convergence of a’(s), as(s) is

monotonic. Therefore, by the monotonic convergence theorem, we know that

/Otaé(s)ds%/ota(s)ds
/Ot as(s)ds — /Ota(s) ds

for all t. Therefore, we can choose a d; such that ‘fot a®(s) ds — fot as, () ds‘ <s.

Pick 6 = min(d1, 57:) and let b € D([0,T],R) such that dg(a,b) < 0. Then there

exists a A such that |a(A(s)) — b(s)| < 57. Then we have the following:

_ /0 a(s) — a(A(s)) + a(A(s)) — b(s) ds

/Ota(s) ds — /Ota(/\(s)) ds
/Ot&(s) ds — /Ota()\(s)) ds
< /Otaél(s)ds—/otaal(s)ds

where the last inequality comes from the fact that [A(s) — s| < 0 < d1, so we know

/Ot a(s) —b(s)ds

VAN

n / la(A(s)) — b(s)] ds

IN

_I_e
2

+5
2

that as,(s) < a(\(s)) < a(s). Therefore,

< t5;=¢

[ ats) b5 s

DO | ™

Therefore, we have that h(a)(t) is continuous for each ¢.

All that remains to show that h(a) is a continuous function from D([0,T],R) —

C([0,T],R). Suppose {ay} is a convergent sequence in D([0,7],R). Then we have
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shown that { fo ar(s)ds} is a convergent sequence for every ¢ and if ar — a, then

[y ar(s)ds — [ a(s)ds. But { ) ay(s)ds} is a sequence of continuous functions on
a compact set which converge pointwise to a continuous function. Therefore, the

convergence is uniform. O
We use the continuity of f to show convergence of the desired integrals.

Lemma 28. If P,, P are probability measures on D([0,T], M) such that P, = P,
P.(t) = P(t) for allt, and S,, S are the random variables of D([0,T], M) with law
P,, P respectively, then [, g(x,t)S,(t,dx) = [, o(t,x)S(t,dx) and

fo Je 9(x,5)Sn(s, dx) ds = fo Je 9(s,2)S(s,dx) ds weakly.

Proof. Because f is continuous and S, (t) converges in distribution to S(t) for all ¢,
then f(S,(t)) = f(S(t)) weakly by the continuous mapping theorem. To see the
convergence for the time integrals, we note that fot Jg 9(x,s) S(s,dx)ds is a com-
position of continuous functions and is therefore also continuous. So again by the
continuous mapping theorem, we have that if S,, = S weakly, then

Iy Jog(a,8) Su(s,dx)ds = [ [ g(x,s) S(s, dz) ds weakly. O

We have essentially proven our desired hydrodynamic limit. All that remains is to

put the last pieces together.

Proof of Theorem 16. Using Lemmas 21, 24, and 28, we take the limit of Equation

5.16 along any convergent subsequence {uf} and get convergence in distribution.

) ) K 1 ¢ M
Jim (0,31 = Jim [ (¢t+§¢m) kst [ [ oo+
: k\ |t : ! 1 k ! k Mt
tim (6.} = Jim [ [ (¢t+§¢>m> dutdst [ [ ox@dbds+ 5L (546
o0 > Jo JR 0 JR

oty = [ [ (604 30m+ 030)) dcs
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Recall the definition of A(z) is such that this compact notation actually represents

/Ot/R@\dus ds = /Ot/[Rcb(s,w)A (/Ré(x—y)us(dx)) pis(dz) ds

This expanded representation makes it clear that the limit along any convergent
subsequence, p(dx), is the weak solution to the PDE (5.5). Under the hypothesis
that there is a unique solution, we can conclude that the whole sequence {u}
converges and has a limit u;. Because the solution to the equation is smooth, we can

say that u(dzr) = u(z,t) dx, with u(z,t) solving Equation 5.5 as desired. O
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6

Conclusion

In this dissertation, we have analyzed the asymptotic behavior of three branching
interacting particle systems. We summarize the results and some open questions
associated with each process.

First, we studied the N-BBM process with selection according to the fitness function
x + ¥(x), where ¥ is periodic. We proved the existence of a long-time limiting
speed of the system and the existence of a stationary distribution in a moving frame.
Further work is ongoing to study the positivity and value of the speed. Additionally,
the speed was proven in the case where the initial distribution of particles was chosen
according to the invariant distribution; it remains open to show that if the process
began in a different distribution that the speed would still exist. This would require
further study of convergence of the process to the invariant measure in the moving
frame.

In the next chapter, we looked at the N-BBM process with a symmetrically decaying
fitness function which had a single local maximum at the origin. Study of this process
was inspired by the behavior of the first process while stuck in a local fitness peak.

We showed a hydrodynamic limit of the process, where convergence was obtained
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in the Kolmogorov distance almost surely and in L'. This limiting measure was
shown to satisfy a free boundary PDE. Several further directions of inquiry are
open. For instance, the particles are required to begin in a symmetric configuration.
This is necessitated by a technical constraint, but is not likely to be necessary for a
similar result to hold. A second open line of inquiry would be to consider a fitness
function which decayed monotonically away from the origin but which was not not
symmetric. This condition was necessary here as a part of the proof technique which
treated particles on either side of the origin were indistinguishable. It is an open
question to show that the result holds under these more general conditions.

Finally, we studied a branching process in which the branch rate of a particle was a
function of the empirical measure of the process. We showed convergence weakly to a
limit which satisfies a non-local PDE, when a unique solution exists. Further inquiry
can be done into precisely the conditions which ensure that such a solution exists.
Additionally, the rate was required to be bounded and positive; further study to
loosen these conditions would allow for interesting cases to be considered, including
the motivating process where the branch rate is a function of a particle’s distance
from the empirical mean. However, as indicated, there are many difficulties in making
this generalization. In particular, controlling particle growth and ensuring there is

no finite time explosion becomes a difficult problem that needs additional study.
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Appendix A

Assorted Facts and Proofs

A.1 Hydrodynamic Limit of a BBM

The purpose of this section is to prove the following hydrodynamic limit.

Theorem 29. Let XN(t) be a particle system beginning with N binary, rate 1
branching Brownian motions in R where the initial positions of each particle cho-

sen independently and distributed according to the probability density p(x). Let

Nt
1
,uiv(x) =N Z5Xk(t): where Ny is the number of particles alive at time t. Then
k=1

limy oo p¥ (dz) = u(x, t) dz weakly, where u(z,t) is the solution to the PDE

1
Up = Uz +u T ERT>0

2 (A.1)
u(2,0) = p(x)

The proof techniques used here are versatile and form the basic structure of many
proofs of this type. The theorems below are not original; they can be found in [22],
[16], [7] for instance. We begin by recalling several theorems which will be used and

then prove the theorem in small pieces.
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We call a collection of probability measures II tight if for each € > 0, there exists a
compact set K such that P(K°¢) < e for each P € II.
We call a collection of probability measures II relatively compact if each sequence

{P,} of measures in II has a further subsequence {P,,} which converges weakly.

Theorem 30 ([7] Prokhorov’s Theorem). Let S be a complete and separable space.
Then for any collection of probability measures 11, 11 is tight if and only if it is

relatively compact.

We also have a theorem which says that if a sequence of probability measures is tight
and each subsequence which converges has the same limit, then we know that the

entire sequence converges to that limit.

Theorem 31. If {P,} is tight and each subsequence which converges weakly at all

converges weakly to the measure P, then P, = P.

These theorems together outline a clear path for determining weak convergence of
a sequence of probability measures. First, one must show that the sequence of
empirical measures is tight (in the appropriate space). By Prokhorov’s Theorem,
this will then guarantee that the sequence is relatively compact. Then, one looks
to find a characterization of the limit object of a subsequence which will prove that
each such limit object must agree. This is often done by relating the limit objects to
PDE solutions or to a particular martingale. This way, uniqueness can be obtained
through other analysis methods and combined with Theorem 31 to give the desired
weak convergence.

When we are dealing with convergence in these cases, we choose to view our objects
as measure-valued processes; that is, our process is an object in D([0, 7|, M), where
M., is the space of positive, finite measures. Luckily, this is a complete, separable

metric space.
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We endeavor to prove tightness in this space. A sufficient condition for tightness
in D([0,T], M) was given by Roelly-Coppoletta in [22]. It relates tightness in the
Skorohod space of measure-valued processes to tightness in the Skorohod space of

real-valued processes.

Theorem 32. Let {P,}, be a sequence of probability measures on D([0,T], M)
and let {fi}r be a dense sequence of functions in Co(R,R). Define ny, P, to be the

pushforward measure through fy

mﬂzﬁﬁﬂ (A.2)

If, for each k in N, {ms, P,}, is a tight sequence of probabilities on the space
D([0,T),R), then {P,}n is tight on D([0,T], M,.).

From there, we can refer to the many theorems that give sufficient conditions for
tightness in the Skorohod space. Omne such theorem which will be useful for our
purposes is the characterization via Aldous (see for instance [16] for the version

below or [1] for the original presentation).

Theorem 33 (Aldous Condition). For each £,m,m, there exists a 0y and ng such
that if 0 < dg and n > ng and if T is a discrete X"-stopping time satisfying T < m,
then

P(X7 s~ X2 2 ) << (4.3)

Theorem 34. If the Aldous condition holds and for each t, the laws of {AX]'},,

where AX]" = X' — lim X[, form a tight sequence, then the distributions of the

s—t—

sequence { X"}, are tight on D([0,T],R).

So let us take a function f € Cj and define M; = ||f||. Then we consider the

sequence of probability measures {msu;'},. The measure mpuy is the law of the

process ¥ = L M F(Xi(1).

92



Lemma 35. The Y; processes satisfy the Aldous condition.

Proof. We let A; be the collection of particles alive at time t and N; = |A;| be the
number of particles alive at time t. Fix an £,7,m and 7 a Y"-stopping time with

7 < m. We look to bound

P([Ys =Y 2n) =P Zf o7 +9)) ——Zf

ueAT+5 ucA;

LS K+ 0) S - S K+ 0)] 2

" uea, e 15\

(A.4)
What this says is that we need to control the amount that the particles move in the
interval |7, 7+ d] and we need to control the number of new particles which are born
in that interval.
For ease of reference, let E be the event that Y ; — Y| > n. We first explain how
to choose 9, ng.
We know that the number of particles alive at time 7 is a random variable whose
distribution is the same as the distribution of the sum of n independent Geo(e™")
random variables. Therefore, Var(N,) = ne?” (1 —e™") and we can fix an a such that

Var(NT)

PN, — ne’| = na) <~

627(1 —e ") (A.5)

an

€
< Z
-3

where the first inequality is Chebyshev’s inequality. Define My = ne” + na.
Let A be the event N, < My. We have selected a to ensure that P(A¢) < £.
Because f € Cy, for each u € A,, there exists a Az, such that if d(X,(7),y) < Az,
then d(f(Xu(7)), f(y)) < 50— Let Az = minyea, Az,. Pick 6; small enough such
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that nP(|B(0)—B(0)] > Awx) < £. Let B be the event that the N Brownian particles
which are alive at time 7 all move less than Ax.

Choose 9, small enough so that each particle alive at time 7 has at most one offspring
during the interval [r, 7 + d2]. Precisely, choose d5 small enough so that P(|F7 (7 +
d2)| > 2 for some u € A;) < 5, where FJ(7 +d2) = {v € Arys, | u < v}. Let C be
the event that all particles alive at time 7 have at most one offspring by time 7 + 5.

Let § = min(dy, d9). Finally, pick ng > M"Mf.

P(E) = P(E|A)P(A) + P(E|A)P(A°)
P(E|A) + P(A°)

P(E|A) = P(E|AN B)P(B|A) + P(E|AN B°)P(B°|A)

(A.6)
<P(E|ANB)+ P(BA)
P(E|JANB) =P(E|JANBNC)P(CIANB)+P(E|JANBNC)P(C|AN B)
P(E|JANBNC)+P(C|AN B)
Therefore, we have that
P(E) < P(E|JAN BN C)+ P(A°) + P(B|A) + P(C°|AN B)
(A.7)

€ 9 9
<PWEIANBNC)+ -+ 5+
(E| Jt3t3t3

All that remains is to show that P(E|AN BN C) = 0. Consider the relevant sum:

LS )~ K Y K (AS)

u€Ar u€A- 15\ Ar
Given A, B,C means we know that N, < ne™ 4+ na, each particle alive at time 7

moves less than Az, where Ax is chosen so that the change in f can be at most

_n_
2Mpy "’

and each particle has at most one offspring in [7, 7 + d]. So for n > ng > ZMJZ My

, We
have that
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%Z|f(Xu(T+5))—f(Xu(T))|+% > (X +9)]

u€A; u€A; s\ Ar
1 i 1
< —-My——+—-MyM
n N2MN + no N
(A.9)
< Q i Man
-2 Un)
n.,.n
<d 1
-2 + 2
=n

Therefore, P(EF|AN BN C) = 0. Plugging this back in to A.7, we get that
P(Y"(r+6)—=Y"(1)|>n) <e (A.10)

for n > ng as desired. Therefore, the collection of processes {Y "} satisfies the Aldous

condition. ]
Lemma 36. {Y"} are tight in D([0,T],R).

Proof. As we have shown that the processes satisfy the Aldous condition, all that
remains to apply Theorem 34 is to show that the laws of the jump process at any
time ¢ is tight. But notice that AY;" < M; for all times ¢, because a jump in Y
represents the addition of a new particle. As only one particle is added at a time with
probability 1, and the jump is of size f(Xy(t)), where X} is the branching particle,
we know that the jump distribution is in fact bounded. Therefore, it is tight and we

can apply Theorem 34 to say that the sequence of processes {Y"} are tight. O

This lemma, combined with Theorem 32, show that the laws of the processes { X"}
are tight on D([0,7], M).
Finally, we now show that any limit of the process must be a weak solution of the

PDE A.1l. Let ¢(z) € C*(R,R) be a test function. Then consider a subsequence
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{159 (dx)}. Because the sequence {1 (dz)} is tight, we know that this subsequence

has a limit, call it p;(dx).

1 Qi Nk(t)
[ o@nitan) = 530 3 olxt
R Nio =
Taking the limit of both sides, we see that
N; NF(t)
li dr) = lim —
Jim [ o) p ) (d) = Jim j;;gb

N} (t)

[ ot mtaa) ~ € > o]

by the law of large numbers. Applying the many-to-one lemma, we see that

N ()

E | 3 0000) | = ¢Els(B0)

—¢f / /R 6(y)p(@)®(x — y,t) da dy

where ®(z,t) = ﬁe_ﬁ/% is the heat kernel.
Therefore, using the fact that p x & solves the heat equation and the fact that if
w(x,t) is a solution to the heat equation, then e‘w(z,t) solves the heat equation

with growth, we can see that this limit is a weak solution to the equation

1
Up = Uz +u xERT>0

2 (A.11)
u(z,0) = p(z)
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Therefore, we know that the limit of the subsequence must be a weak solution to the
heat equation. Because of the smoothing property of the heat equation, we can in
fact say that the resulting limit has a density which is a strong solution to the heat
equation. Because the solution to the heat equation is unique under sufficient growth
conditions, we can apply Theorem 31 to say that the measures converge weakly to

u(x,t) dz where u(x,t) solves the heat equation, as desired.
A.2 Distribution of the Size of a BBM

Theorem 37. Let N; be the size of a rate A binary branching Brownian motion at
time t. Then
N, 2 Geo(e™)

That is, P(N, = k) = (1 — e M)F1(e™).

Proof. We know that the characteristic function of a geometric random variable with

parameter p is

ot
f(p.0) = E[e] = ﬁ (A.12)

We first find an equality satisfied by E[e?™] by conditioning on the first branch time

T.

E[e®™] = E[e™|7 > t]P(T > t) + E[e"M |7 < t]P(7 < 1)

t
= efe™™ 4 / E[e’|r = s]P(T = 5) ds
0
. t . 1 2
_ ezGe—At +/ [E[ezG(Nt_S—i-Nt_S)])\e—/\s ds
0

where in the last line we have split N; into N , + N2 _, the sum of the offspring of
particle 1 and the offspring of particle 2 in the time remaining from s to ¢t. Now make

a u-substitution and use the fact that N}

L., N2, are independent and identically

97



distributed to N;_, to see that,

t
[E[eiGNt] — eiee—)\t +/ [E[ewN“]z)\e_/\te)‘“ du
0

Rather than solve this integral equation, we are going to plug in our guess, f(e™*!, ),

for E[e?™] and verify that the equality holds. That is, we want to show that
) t
fe™0) = efe™ 4 e’\t/ fle™* 0)* e du (A.13)
0

The right hand side becomes

t —2Au 2160
e e
e du

t
0 —Xt | At A N2y AU g i A At
e’e M +e /0 fle™ 0) Ne™du =ee ™ +e /0 1= (1= cmje)?

0 At 20 [ Ae
= ¢ 4 e Me? s d
e’e +e e /0 (1 — (1 — e*’\“)ew)Q U

Let y =1 — (1 — e *)e? and the integral becomes

1—(1—e~Mt)et _efie
— ewef)\t +eAte210/ dy
1

Y
RIS VIR R 1 1
1 —(1—eM)e
RIS
1 (1 —e M)e?
= f(e™,9)
as desired. Therefore,
E[e”™] = f(e™,0) (A.14)
so N, is geometric with parameter et O]

A.3 A Brownian Motion Tail Bound

When bounding the motion of the particles in a branching Brownian motion, the

many-to-one lemma often leaves us with an expression involving a single Brownian
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motion. We use the following tail bound to look at the probability that a Brownian

motion travels far in a fixed amount of time.

Theorem 38. Let B(t) be a Brownian motion with B(0) = 0. Then

P(1B(| > 0) < o8 (A15)

Proof. This proof relies on a simple change to the integral that represents this prob-
ability. We multiply by x/0, which is greater than 1 because the integral we are

taking starts at 0.

Sometimes this is the upper bound we choose to use. Other times, we go a step

farther and say that

P(IB(h)] > ) < %

A.4 Relevant Harris Chain Results

In Chapter 3, we prove that a Markov chain Z(t) is in fact a positive recurrent Harris
chain. We refer to several theorems in Meyn and Tweedie [17], which we state below
for convenience of reference, using the notation of [17].
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Theorem 39 ([17] Theorem 1.2(a)). If Z(t) is Harris recurrent with invariant mea-
sure T then Z(t) is positive Harris recurrent if and only if there exists a closed petite

set C' such that for some (and then any) § > 0,

sup E,[70(0)] < oo
zeC

where Tc(0) 1is the first hitting time of C' after 6.

Theorem 40 ([17] Theorem 3.1). Suppose that a is a general probability distribution
on RT and let {T(k)} be an undelayed renewal process with increment distribution a.
Then the K,-chain of Z(t) is the discrete time chain Zy, = Z(T(k)). If Zy is Harris
recurrent, then so is the process Z(t). And then the chain Zj is positive Harris

recurrent if and only if the process Z(t) is positive Harris recurrent.

When this result in used in this thesis, we choose a to be the distribution which is a
constant 7' = O(In(N)) with probability 1. This is a natural choice, as the process
can be easily thought about in chunks of order In(/N), the amount of time it takes a

Brownian motion to grow to size V.

Theorem 41 ([17] Theorem 3.3). If C is petite and P,(1c < 00) =1 for allz € X,

then Z(t) is Harris recurrent.
A.5 Continuity Statements Relating to Chapter 5

Lemma 42. [f ®(x) is Lipschitz and A(x) is uniformly continuous, then \(z,-) is
uniformly continuous. That is, for all € > 0, there exists a & > 0 such that if

Wassi(p,v) <9, then | ANz, pu) — Az, v)| < e.

Proof. Fix an € > 0 and let K be the Lipschitz constant of ®. Choose ¢ such that

if |x —y| < K0, then |A(z) — A(y)| < €, which we can do uniformly for all z. Let
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Wassi(p,v) < 6. Then note the following:

o) = M)l = [ ([ @t = tan) o ( [ oo =gt

Notice that

/R‘P(w‘ —y)uldy) — / Pz - y)V(dy)' =K

R

[ 2t - [ )

< K$§
(A.16)
because w = f.(y) is a 1-Lipschitz function and therefore
U[R fe()p(dy) — [ fx(y)u(dy)‘ < § by the definition of the Wasserstein distance.

Because the arguments are within K¢ of each other, we know that

‘A (/R Pz - y)u(dy)) —A </{R Pz - y)V(dy)) ’ <e

Therefore, |\(x, 1) — ANz, v)| < € as desired. O

Lemma 43. If ®(x) is Lipschitz and A(x) is uniformly continuous, then A(-,p) is
uniformly continuous. That is, for all € > 0, there exists a 6 > 0 such that if

|z —y| <6, then [N, 1) — Ay, p)| <e.

Proof. Fix an ¢ > 0 and again let K be the Lipschitz constant of ®. Because

A is uniformly continuous, we can pick a § such that if |u — v| < Ku(R)d, then
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|A(u) — A(v)| < e. Suppose |x — y| < d. Then

[ o= 2ntaz) ~ [ o= 2)n(az)

R

/R (B — 2) — By — 2))uld=)
< / B — 2) — By — 2)|u(d2)

S/RKWI—:UW(dZ)

= K|z — y|u(R)

< Ku(R)o
Therefore, if |x —y| < §, then

o) = Al = A ([ o6 ntaz)) = ([ o0 utan)

<e

by the choice of §. Therefore, we have the desired inequality. m

The next lemma tells us that we can bound the change in A\ over a fixed time interval
by a constant times the change in particle positions plus a constant times the length
of the interval. The second term in the bound is necessary because each new particle
birth adds mass to the system and therefore causes a jump in the rate of the process.
The previous lemmas tell us that X\ is continuous; roughly this says that between
birth rates, if none of the particles move too far, then the branch rate of each particle

doesn’t change very much.

Lemma 44. Suppose that A, ® are bounded Lipschitz functions with Lipschitz con-
stants Ky, Ko respectively and ||®||oc = M. Fiz a time interval [t,t+ h]. Let Ny be
the number of particles at time t and Nap = Nyyp — Ni. For this lemma, we write

Xu(t) = Xu(t)Lr,<e + Xo()1r, e, where v <w. If sup  sup [Xy(s) — Xu(t)] <0

U,EA,H,h tSSSt‘f’h
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and Nap < Ch, then there exists constants Cy,Cy > 0, functions of N, Ny, such that

sup  [A(z, 1) = Ma, 1)) < C16 + Coh.
t<s<t+h

Proof. Using the definition of A\, we can see that

A [ ate - ) -4 ([ o= nua)

< K\ /R@(af —y)u (dy) - /R Oz —y)u; (dy)
=TS A - X))~ 3 @ - Xu(0)
ueA: ued (A.17)
< % S — Xo(s) = Dla — Xu@)|+ S |9z — Xu(s))]
u€A; u€A\ Ay
< % (N, K30 + ChMs)
_ KAfA([@Nt(S n KAJ\A{@C}L
O

Lemma 45. Suppose the conditions of the above lemma are satisfied. Then there
exists constants D1, Dy > 0, functions of N, Ny, such that for each particle k alive at

time t, sup |)‘(Xu(s)a ”iv) - )‘(Xu(t)v Mé\f)| < D16+ DQh

t<s<t+h

Proof. We can split up the change in A to account for the change resulting from a

shift in the x value and the change resulting from a shift in the measure.
IMXu(s), ) = MXu(t), 1)
< IMXuls), p13) = MXu(s), 1)+ IMXu(8), 1127) = MXu(t), 1)) (A.18)
< 16+ Coh+ [MXu(s), 1) = A(Xu(t), 1)

But we have seen already that A(-, ) is continuous, so it will not be hard to bound

this by something proportional to 9.
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|)‘(Xu<3)nu7]tv) - )‘(Xu(t>7ﬂiv)|

A ([ocns - and@) -4 ([ a0 - @)

gKAAkwxaw—z»—wxaw—@nﬁu@

< Ky R|¢CX@@)—-@-—éﬁX@@)—zﬂuf&&) (A.19)
g&&é%@—%WMW)

N,
- Kq)KAéWt
< 046

Therefore, we have that

IA(Xu(s), 1) = MXu(t), 1i")| < C16 + Coh + C56
(A.20)
= D10+ Dyh

giving us the desired bound. O]
A.6  Poisson Facts

Theorem 46. Let N, be a Poisson random variable with rate A. Then % — A a.s.

and in L' ast — oco.

Proof. We begin with the a.s. convergence. Letting |¢| be the integer part of t, we
can write N(t) = N([t]) + (N(t) — N([t])) = S0, Xi + (N(t) — N([t])), where
the X}, are i.i.d. Poi(1) random variables. Because X, is integrable, we can apply

the strong law of large numbers to say that LTlJN ([t]) — A a.s. We then have the
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following

,_.
S
—
~
| I—
SN—
—
~
| I—

o t—o0 LtJ T tlimo t
N
i YO = N
t—o00 t
Notice that 0 < NO-N) ang

t

N(t) = N([t])

<
t - t
< Nt + 1) = N([t))
- [£]
XLtj+1
2]
n+1
But we know that lim k:—lk:)\, SO
Xpt1 n n 1
A= — X
nsoo nm N4 1 n+1n; F
— lim 224y

which means that lim,,_,, % = 0. This says that

i YO g YO =N

tooo  t t—o0 t

= )\ a.s.

To see L! convergence, we use the generalized LDCT. We note that

M—A‘ <
t —

@ + A for all ¢ and that by the argument above, @ —+ A converges pointwise to 2.
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Additionally, E [@ + A] = 1E[N(t)]+ A =2\, s0 E [@ + )\} clearly converges to

E[2A] = 2\. Therefore, all the conditions of the generalized LDCT are satisfied and

we can say that

e [50] e[e10

=0

by the a.s. argument above. Therefore, we have L' convergence as well. O
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