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Abstract

This dissertation examines the asymptotic behavior of three branching processes.

The first is a branching process with selection; the selection is dictated by a fitness

function which is the sum of a linear part and a periodic part. It is shown that

the system has an asymptotic speed and that there is a stationary distribution in

an appropriate moving frame. This is done through an examination of tightness of

the process and application of an ergodic theorem. The second process studied is a

branching process with selection driven by a symmetric function with a single local

maximum at the origin and which monotonically decreases away from the origin. For

this process, a large particle limit of the system is proven and related to the solution to

a free boundary partial differential equation. Finally, a branching process is studied

in which the branch rate of particles is a function of the empirical measure. Weak

convergence to the solution of a non-local partial differential equation is proven.

Tightness is proven first, and then the limit object is characterized by its behavior

when applied to test functions.
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1

Introduction

An interacting particle system is a collection of particles that behave in a prescribed

random way and interact with each other through a set of rules or through a common

environment. Many of the mathematical questions which arise concerning interacting

particle systems are related to how different microscopic rules of motion and interac-

tion between particles influence the macroscopic system. This is a broad idea which

can be captured in many different ways; relevant aspects of study include looking

at what happens as the number of particles in the system is increased or analyzing

the system behavior after a long period of time. In addition to the mathematical

interest in these problems, interacting particle systems are appealing to a broader

scientific audience as a way to model biological and physical observations. As such,

the interplay between these subjects is large; biology and physics have provided

substantial inspiration in the mathematical development of the field of interacting

particle systems.
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1.1 Evolutionary Models

Interacting particle systems have been used extensively to model evolutionary ideas

of selection and competition. This is done primarily in one of two ways.

The first is through a selective force, which removes/kills particles from the system.

One way this is invoked is to have a selection rule based on a particle’s position in

relation to other particles in the system. This selection dictates interaction between

the particles and drives the evolution of the population.

Another method of evolutionary interaction focuses on a particle’s reproduction rate,

rather than removal of particles from the system. Such models assume that fitness of

an individual can be represented by a change in the relative branch/birth rates of the

particles; that is, the more fit individuals in a population are the ones that are more

likely to reproduce. This interaction mechanism is common in multi-type branching

models, especially those which model diseases with the ability to mutate, such as

cancer. Formulating fitness in this way removes the need for a pre-defined “fitness

landscape”, which is a quantity that can be difficult to get a hold of in biological

applications. As such, this formulation is often appealing to those who are looking

to use experimental parameters in the construction of models.

1.2 Structure of Paper

In this dissertation, we will look at both of these types of competition through

different interacting particle systems. The focus of the results is analysis of the long

time limits and large particle limits of the processes.

In Chapter 2, we give necessary background to understand the work in later chapters,

including definitions of the common objects and an introduction of theorems and

properties that will be of use. In Chapter 3, we study the N-BBM branching-selection

process with fitness function x+Ψ(x), where Ψ(x) is a periodic function. In Chapter

2



4, we give results for an N-BBM system where the fitness function is a symmetric,

decreasing function with a single local maximum at the origin. Finally, in Chapter 5,

we analyze a system of branching Brownian motions in which the particles interact

through their branch rate. We study the case where the branch rate takes a specific

form as a function of the empirical measure.
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2

Background

2.1 Branching Brownian Motion

A fundamental component of each of the particle systems we study is an object

called branching Brownian motion (BBM). Informally, branching Brownian motion

is a spatial stochastic process in which particles move like Brownian motions and at

random, exponential times, split into a (possibly random) number of new, indepen-

dent Brownian motions.

2.1.1 Brownian Motion

Branching Brownian motion is built out of a combination of individual Brownian mo-

tions. A one-dimensional Brownian motion is a stochastic process with the following

properties

1. If t0 < t1 < · · · < tn, then B(t0), B(t1)−B(t0), B(t2)−B(t1), . . . ,

B(tn)−B(tn−1) are independent.

4



2. If s, t ≥ 0, then B(t+ s)−B(s)
d
= N(0, t); that is,

P(B(t+ s)−B(s) ∈ A) =

∫
A

1√
2πt

e−x
2/2t dx

3. t 7→ B(t) is continuous with probability 1

One can show that such a process exists (see for instance [12], among others). From

the definition of one-dimensional Brownian motion, we can generalize to higher di-

mensions with multidimensional Brownian motion. A d-dimensional Brownian mo-

tion starting at (x1, x2, . . . , xd) ∈ Rd is a process B(t) = (B1(t), . . . , Bd(t)) where the

Bk(t)’s are independent, one-dimensional Brownian motions with Bk(0) = xk.

An rate λ exponential random variable T is a random variable with probability

density function f(x) = λe−λx for all x ≥ 0 and f(x) = 0 for all x < 0. The

associated CDF is P(T ≤ x) = 1 − e−λx for x ≥ 0 and E[T ] = 1/λ. This random

variable is important in the construction of branching Brownian motion because it is

memoryless ; that is, if T is a rate λ exponential random variable and t, s ≥ 0, then

P(T > t+ s|T > s) = e−λt

This means that exponential random variables are independent of their past behavior,

making them very useful in the construction of Markov processes (for more details,

see [12]).

Another property of exponential random variables which will be useful is their rela-

tionship to the Poisson random variable. Let {Ti}i∈N be a collection of independent

rate λ exponential random variables. Fix a t > 0 and let Nt = max{k
∣∣ ∑k

i=1 Ti < t};

then Nt
d
= Poi(λt).

Exponential random variables have the property that if T1, T2, · · · , TN are indepen-

dent rate λ exponential random variables, then min(T1, T2, . . . , TN) is equal in dis-

tribution to an exponential rate λN random variable.

5



2.1.2 Definition of Branching Brownian Motion

We will define a rate λ branching Brownian motion with offspring distribution ρ. Let

{Bk(t)}k∈N be a collection of independent Brownian motions in R
d, starting at the

origin, and {τjk}j,k∈N be a collection of independent exponential random variables

with mean 1
λ
. Define ρ, a probability distribution on N = {0, 1, 2, · · · } and let

{Ak}k∈N be a collection of independent random variables distributed according to

the distribution ρ. For t < τ11, X(t) = B1(t). At t = τ11, A1 − 1 new particles are

added to the system; if B1(τ11) = b1, then we say that X(τ11) = (b1, b1, . . . , b1) ∈ RA1 .

Each of the new particles will move like an independent Brownian motion. Let

m2 = mink=1,...,A1 τ2k. For τ11 ≤ t < m2, X(t) = (B1(t), b1 + B2(t − τ11), b1 +

B3(t − τ11), · · · , b1 + BA1(t − τ11)). At m2, particle Xk branches and introduces

A2−1 new particles into the system, where k = arg min1≤j≤A1
τ2j. Therefore, letting

Xk(m2) = b2, we get X(m2) = (B1(m2), b1 + B2(m2 − τ11), · · · , b1 + BA1(m2 −

τ11), b2, b2, · · · , b2) ∈ R
A1+A2−1. The pattern continues in this manner, with each

particle that is introduced into the system being associated to a Brownian process to

define the increments and a collection of exponential random variables to determine

splitting times for that particle.

If Ak = 2 a.s. for all k, we call the BBM a binary branching Brownian motion.

We can also view BBM as a measure-valued process, with

µ(t) =
Nt∑
k=1

δXk(t)

where Nt is the number of particles alive at time t (that is, number of particles whose

birth time is before t).

6



2.1.3 Properties of Branching Brownian Motion

As a fundamental probabilistic object, the properties of branching Brownian motion

are well studied. Some properties of this object are summarized below.

The first property gives us a distribution for the number of particles

Theorem 1. Let Nt be number of particles in a binary BBM at time t. Then

Nt
d
= Geo(e−λt)

That is, the distribution of Nt is geometric, with P(Nt = k) = (1− e−λt)k−1(e−λt).

The proof of this can be done by verifying that the probability generating function of

the variable Nt is precisely that of a geometric random variable with the appropriate

parameter. A proof in a restricted case can be found in Appendix A.

One of the tools most frequently used in the analysis of particle systems is the hy-

drodynamic limit. A hydrodynamic limit is a scaling limit of the microscopic system

which reveals macroscopic properties, often as the solution to a partial differential

equation (PDE). The name comes from hydrodynamics itself; particles move in a

fluid randomly but display large-scale, deterministic behavior that can be quantified

using PDEs. Finding a hydrodynamic limit can be thought of as trying to find a

law of large numbers (LLN) for the empirical measure of the system. In the case of

non-interacting particles, this is well-established; once the particles begin to interact

and independence is lost, this LLN can be difficult to obtain.

The following theorem describes the hydrodynamic limit of a system of independent

branching Brownian motions.

Theorem 2. Let XN(t) be a particle system beginning with N binary, rate 1 branch-

ing Brownian motions in R where the initial positions of each particle are cho-

sen independently and distributed according to the probability density ρ(x). Let

7



µNt (x) =
1

N

Nt∑
k=1

δXk(t), where Nt is the number of particles alive at time t.

Then µNt (dx)⇒ u(x, t) dx weakly, where u(x, t) is the solution to the pde

ut =
1

2
uxx + u x ∈ R, t > 0

u(x, 0) = ρ(x)

(2.1)

The proof contains a classic argument in the study of hydrodynamic limits. In par-

ticular, we must argue two things. First, we show that the collection of solutions

is tight and is therefore pre-compact. Second, we show that any limit of any sub-

sequence is a weak solution to 2.1. The uniqueness of the solution to the PDE in

turn guarantees uniqueness of the limit, giving the desired result. A full proof can

be found in the appendix.

2.2 Interacting Particle Systems

As defined above, each particle in a branching Brownian motion is independent of

the others. The process we now focus on includes particles which interact with

each other. Adding dependence in the process makes the study of the system more

complicated, and small variations to the system can make the process much less

amenable to study.

2.2.1 Branching Brownian Motion with Selection

The interacting particle model that will be studied in Chapters 3 and 4 is from a

class of models called branching Brownian motion with selection. These are branching

processes in which interaction between the particles occurs through the removal of

particles from the system, depending in some way on the other particles in the

system. We will employ a selection mechanism which ensures that there are exactly

N particles designated as alive at any time t; this process is often called an N -BBM,

8



to indicate the fixed system size. One can interpret these processes as models of

survival of the fittest, and this idea dictates much of the terminology surrounding

the process.

2.2.2 Definition of an N-BBM

We define an N-BBM with fitness function V (x) as follows. First, we specify a

multi-type branching process that will generate the N -BBM process. Let {Yi}Ni=1

be a collection of independent, binary, rate λ branching Brownian motions. At

time 0, all particles are labeled as alive (A). Let τ1 be the first branch time of

the Yi’s. If k = arg min1≤i≤N V (Yi(τ1)), where any ties are broken by uniformly

choosing one particle index, then the label of Yk changes to dead (D) at time τ1.

All particles which are born take the label of their parent, and all particles move

like independent branching Brownian motions. Note that if Yk is both the particle

that branches and the particle that is removed, we choose to have the new particle

born be alive. Therefore, the process at τ1 contains N type A particles and 1 type

D particle. The process is then defined in a similar manner for all t. At each time

t, there will be N alive particles, and the number of dead particles will grow over

time. For each time t, let X1(t), · · · , XN(t) enumerate the positions of the alive

particles, with X1(t) ≥ X2(t) ≥ · · · ≥ XN(t). Then we define the N-BBM X(t) as

(X1(t), X2(t), . . . , XN(t)) ∈ Rd.

Notice that the only way for a particle to be alive at time t is for the particle and

all its ancestors to have been alive for all s ≤ t. That is, type D particles can never

become type A particles.

Unless otherwise indicated, we will assume without loss of generality that the N-BBM

is rate 1; that is, λ = 1.

9



2.2.3 Properties of an N-BBM

Notice that unlike BBM, there are always exactly N particles in N-BBM. Therefore,

the waiting time between each birth event is an independent, rate Nλ exponential

random variable (since it is the minimum of N independent rate λ exponential ran-

dom variables). This leads us to a theorem about the behavior of N -BBM birth

events.

Theorem 3. Consider a time interval [t, t + h] and let Mh be the number of birth

events of a rate 1 N-BBM process in that interval. Then Mh
d
= Poi(Nh) and there-

fore, P(Mh ≥ 2) = O(h2) as h → 0. More precisely, this means that there exists a

constant C such that

lim sup
h→0

P(Mh ≥ 2)

h2
≤ C

The first statement in the theorem follows from the fact that interarrival times in

a Poisson point process on R
+ are exponential, and the second part of the theorem

follows from the first. Because Mh
d
= Poi(Nh), we have that

P(Mh ≥ 2) = 1− e−Nh(1 +Nh)

= 1− (1 +Nh)
∞∑
k=0

(−Nh)k

k!

= (Nh)2 − (1 +Nh)
∞∑
k=2

(−Nh)k

k!

=
∞∑
k=2

ckh
k

for constants ck. So this probability is O(h2) as h→ 0.

10



2.3 Additional Notation and Key Ideas

2.3.1 Ulam-Harris Notation for BBM

In addition to the notation for BBM used in 2.1.2, some proofs will also make use of

the Ulam-Harris labeling system. This labeling system makes it easier to reference

the underlying tree structure of BBM; it is defined as follows.

Let Y (t) be a branching Brownian motion and U be defined as the set of all finite

ordered tuples of the natural numbers:

U =
∞⋃
i=1

N
i

We associate to each particle in Y (t) an element u ∈ U ; the index is assigned to

indicate the lineage of the particle. That is, Yu(t) with u = (1, 3, 2) is the location

at time t of the second child of the third child of the first initial particle.

Those familiar with Ulam-Harris notation should note that this is slightly different

than the standard definition. In particular, many uses of this labeling system include

the label ∅ to indicate the initial particle at time 0 (corresponding to the root of the

underlying Galton-Watson tree). However, because all the situations in which we

will use this notation begin with not one but N branching Brownian motions, we

omit the ∅ label and instead label the N initial particles with the tuples {(i)}Ni=1.

Because the label of each particle relates directly to its lineage, the labels of particles

give us more information about how particles relate to one another. For instance,

Yu is an ancestor of Yv if there exists a w ∈ U such that v = (u,w), where (u,w)

is the concatenation of u and w. In this case, we write u < v. |u|, the number of

coordinates in the tuple u, is the generation of Yu.

When using this notation, we say that a parent particle dies and is replaced by their

children at each birth event. If τv is the birth time of Yv, then we need to define

Yv(s) for s < τv. We choose to use the convention that Yv(s) = Yu(s), where u < v

11



and Yu is alive at time s. This allows us to refer to the entire history of a particle

through the positions of its ancestors.

When using Ulam-Harris notation, we will often write At ⊂ U to indicate the indices

of the set of alive particles at time t. Therefore, Nt = |At| would indicate the number

of particles alive at time t. To avoid confusion, indices in Ulam-Harris notation will

use the letters u, v, and w and indices in N as defined in Section 2.1.2 will use the

letters i, j, and k.

2.3.2 Many-to-one Lemma

One of the basic facts which will be used extensively in this dissertation is a tool

called the many-to-one lemma. We will state and prove the specific version used in

the later proofs; however, much more general versions exist. See for instance, the

statement and proof of a many-to-few lemma in [14].

Let Y (t) = (Y1(t), Y2(t), · · · , YNt(t)) be a rate λ branching Brownian motion with

offspring distribution ρ = {ρm}m∈N. Nt ∈ N is the number of particles alive at time

t and Y (0) = (x).

Lemma 4 (Many-to-one Lemma). Let f be a measurable function on R. Then

Ex

[
Nt∑
k=1

f(Yk(t))

]
= E[Nt] Ex[f(B(t))]

where B(t) is an independent BM started at x.

Proof. We give a PDE proof of this fact. Define

u(x, t) = Ex

[
Nt∑
k=1

f(Yk(t))

]

12



and let τ be the first branch time of the BBM. Then we can say that

u(x, t) = Ex

[
Nt∑
k=1

f(Yk(t))
∣∣∣ τ > t

]
P(τ > t) + Ex

[
Nt∑
k=1

f(Yk(t))
∣∣∣ τ ≤ t

]
P(τ ≤ t)

= Ex[f(B(t))](e−λt) + Ex

[
Nt∑
k=1

f(Yk(t))
∣∣∣ τ ≤ t

]
P(τ ≤ t)

Let η(x, t) = Ex[f(B(t)] and note that η(x, t) solves

ηt =
1

2
ηxx

η(x, 0) = f(x)

To simplify the second term, we condition on τ = s:

Ex

[
Nt∑
k=1

f(Yk(t))
∣∣∣ τ ≤ t

]
P(τ ≤ t) = P(τ ≤ t)

∫ t

0

Ex

[
Nt∑
k=1

f(Yk(t))
∣∣∣ τ = s

]
λe−λs

P (τ ≤ t)
ds

=

∫ t

0

λe−λs Ex

[
Nt∑
k=1

f(Yk(t))
∣∣∣ τ = s

]

Define M to be the number of offspring at the branch event. Then

Ex

[
Nt∑
k=1

f(Yk(t))
∣∣∣ τ = s,M = m

]
= Ex

 N1
t∑

k=1

f(Yk(t)) + · · ·+
Nm
t∑

k=1

f(Yk(t))
∣∣∣ τ = s,M = m



where N j
t is the number of particles alive at time t whose ancestor was offspring j.

Because each BBM is identical and independent, this gives the equivalence

Ex

 N1
t∑

k=1

f(Yk(t)) + · · ·+
Nm
t∑

k=1

f(Yk(t))
∣∣∣ τ = s,M = m

 = m · u(y, t− s)
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Integrating over all possible branch locations y ∈ R and summing over the potential

number of offspring, we get

∫ t

0

λe−λsEx

[
Nt∑
k=1

f(Yk(t))
∣∣∣ τ = s

]
=
∑
m

mρm

∫ t

0

∫
R

λe−λsu(y, t− s)Φ(x− y, s) dy ds

= E[M ]

∫ t

0

∫
R

λe−λ(t−s)u(y, s)Φ(x− y, t− s) dy ds

(2.2)

where the last equality comes from a change of variables, and Φ is defined as

Φ(x, t) =
1√
2πt

e−x
2/2t

which is the fundamental solution to the PDE

Φt =
1

2
Φxx

Combining what we have, we see that

u(x, t) = e−λtη(x, t) + E[M ]

∫ t

0

∫
R

λe−λ(t−s)u(y, s)Φ(x− y, t− s) dy ds

= e−λt
[
η(x, t) + E[M ]

∫ t

0

∫
R

λeλsu(y, s)Φ(x− y, t− s) dy ds
]

Isolating the expression in the brackets, we see that

w(x, t) = η(x, t) + E[M ]

∫ t

0

∫
R

λeλsu(y, s)Φ(x− y, t− s) dy ds

is the Duhamel formula for the solution of the PDE

wt =
1

2
wxx + E[M ]λeλtu(x, t)

w(x, 0) = f(x)

14



Since eλtu(x, t) = w(x, t), we see that

wt = λeλtu(x, t) + eλtut

wxx = eλtuxx

Plugging these in the PDE solved by w, we get

λeλtu+ eλtut =
1

2
eλtuxx + E[M ]λeλtu

eλtut = eλt
[

1

2
uxx + (E[M ]− 1)λu

]

ut =
1

2
uxx + (E[M ]− 1)λu

Therefore, u(x, t) solves the PDE

ut =
1

2
uxx + (E[M ]− 1)λu (2.3)

u(x, 0) = f(x) (2.4)

If we actually solve this PDE, we see that u(x, t) = e(E[M ]−1)λt
Ex[f(B(t))]. Noting

that E[Nt] = e(E[M ]−1)λt, we have proved the many-to-one lemma:

Ex

[
Nt∑
k=1

f(Yk(t))

]
= E[Nt] Ex[f(B(t))]

The statement of this lemma is similar to that of Wald’s lemma, but it does not

require independence of the random variables Yk(t). It is necessary to remove this

condition from the statement, as the locations of particles in a branching Brownian

motion are dependent through their common ancestors.
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3

N-BBM with a Linear + Periodic Fitness Function

3.1 Introduction

Let X(t) be an N-BBM with fitness function V (x) = x + Ψ(x), with Ψ(x) a 2π-

periodic function (see 2.2.2 for a precise process definition). We define a selection

window, L, for the function V (x) as

L = inf
{
d
∣∣∣ V (x) ≤ V (y) for all x, y ∈ R such that x− y > d

}
(3.1)

That is, the selection window L is the smallest distance which guarantees that if

Xk(t)−Xj(t) > L, then V (Xk(t))−V (Xj(t)) > 0. If V (x) is monotonic, then L = 0;

in general, however, we will be interested in choices of Ψ for which L > 0.

Remember that we choose to label the particles in order of decreasing position in R

for all time:

X1(t) ≥ X2(t) ≥ · · · ≥ XN(t)

3.1.1 Related Work

Early work on this system focused on discrete models; particles did not move between

branch events and all the motion of the system came from the displacement between
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a particle and its parent. In 1997, Brunet and Derrida studied a stochastic selection

system to investigate the effect of a cutoff on the velocity of a traveling wave [8]. In

their model, N particles branched at discrete times, with offspring displaced from

their parents and selected to favor overall motion to the right. They computationally

studied the decrease in the velocity of the traveling wave caused by the finite system.

They found the velocity to be slowed at a rate of (logN)−2. Bérard and Gouére [4]

later verified this asymptotic rate for a similar class of particle systems.

Many variants of Brunet and Derrida’s original system have been studied in recent

years. Discrete models, without the added complication of movement between branch

times, were the first tractable variations to be considered. One such variant was

studied in 2011 by Durrett and Remenik [13]; they looked at a broad class of discrete-

time models similar to those considered in [4], focusing on proving a hydrodynamic

limit. They showed that the system has a positive limiting speed for large times and

has a hydrodynamic limit; the empirical measure limits to an absolutely continuous

measure solving a free boundary PDE as the number of particles goes to infinity.

N-BBM was introduced in 2014 by Berestycki and Zhao [6] as a continuous time vari-

ant of Brunet and Derrida’s system. They studied the problem in d ≥ 1 dimensions

with fitness functions V (x) = ||x|| and V (x) = 〈x, ν〉 for some vector ν. They were

able to describe the long time speed and shape of the finite particle system. In 2017,

De Masi, Ferrari, Presutti, and Soprano-Loto [11] proved a hydrodynamic limit of

N-BBM for d = 1 and V (x) = x.

3.1.2 Contribution and Difficulties

In the work of Berestycki and Zhao [6] and of DeMasi et. al. [11], the arguments often

rely on the monotonicity of the fitness function. That is, the ordering of particles by

position and by fitness is the same. This is key in both the coupling arguments used

and in meeting the conditions of the subadditive ergodic theorem (see Proposition
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2 in [4] for an example of a classic proof technique). The speed of the system and

the hydrodynamic limit have not been studied before for N-BBM in the absence of

a monotonic fitness function; many of the standard proof techniques do not apply

in this greater generality. The interplay of the non-monotonic fitness function, the

continuous time motion of the particles, and the continuous time branching behavior

distinguishes the problem studied here from previous work.

3.1.3 Motivation for a non-monotonic fitness function

For the remainder of this chapter, we consider an N-BBM system with a fitness

function V (x) = x+ Ψ(x), for Ψ(x) a 2π-periodic function. Depending on the choice

of Ψ, V (x) may not be monotonic. We are particularly interested in the idea of a

fitness function with local fitness valleys: zones of lower fitness which the particles

must cross to reach zones of higher fitness. Considering such a fitness function

provides an intriguing mathematical setting and gives an abstract look at a situation

of biological mutation which has been conjectured in the development of cancer [15].

Fitness landscapes with local maxima have been of theoretical and experimental

interest to biologists since the 1930’s when Sewall Wright studied the phenomenon

and conjectured his Shifting Balance Theory as a mechanism for movement between

local fitness maximums [18]. A possible factor behind the presences of fitness valleys

in genetic landscapes is the idea of epistasis. Epistasis is the term given to the

interactions between mutations. When mutations interact in a non-additive way,

pathways of evolution between two high fitness states can be interspersed with low

fitness states. In particular, biologists consider the case in which individuals have

reached a local, but not global, fitness peak and ask whether populations can traverse

the fitness valley to reach the global fitness peak (see [18] for a survey of the field

from a biological perspective).

In this chapter, we study fitness functions with many local fitness peaks but no
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global maximum. The fitness function was not chosen to model a particular bio-

logical situation but rather to abstractly consider the idea of crossing fitness valleys

in a mathematically interesting way. Because fitness functions are difficult to dis-

cover experimentally and likely are not as well-behaved as the functions chosen here,

this work is not intended to be applied directly to a biological system. Rather, we

study mathematically the question of how a population evolves in a landscape with

regularly spaced local maxima, and observe through simulations the behavior where

systems get stuck for a long time in a single fitness peak and the behavior where

systems are able to travel quickly across multiple fitness peaks.

3.2 Main Results

First we show the existence of a stationary distribution of the system in a moving

frame. From that result, it follows almost immediately that the system has a speed.

To make these ideas precise, we define a shift random variable

k(t) = arg min
k∈Z

{|XN(t)− 2πk|} (3.2)

which tracks how many periods in front of (or behind) the origin the particle XN(t)

is. In the case of multiple minimizing k values (which occurs when XN(t) = (2n+1)π

for some integer n), we define k(t) to be the smallest k value which minimizes that

quantity. From that, we define the shifted process Z(t)

Z(t) = X(t)− 2πk(t) (3.3)

Notice that Z(t) ∈ [−π,∞)N−1× [−π, π). Because the fitness function is unbounded,

the moving frame is necessary to recenter the system over time. Z(t) is a Markov

process because determining the relative fitness values of the particles only depends

on knowing their relative positions and their placement in the period of Ψ, and

relative fitness is enough to decide which particle to remove.
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Our first result says that Z(t) is a positive recurrent Harris chain. Harris recurrence

is the generalization of Markov chain recurrence to Markov processes with general

state spaces; we defer the definitions to make this idea precise until Section 3.3.

Theorem 5. Z(t) is a positive recurrent Harris chain with a unique stationary dis-

tribution π.

Once we have the existence of a stationary distribution of the shifted chain Z(t), the

speed of the process X(t) follows from Birkhoff’s ergodic theorem and bounds on the

distance traveled by the maximum of N Brownian motions.

Theorem 6. Let X(0) be chosen according to π, the stationary distribution of Z(t).

Then the selection system, X(t), has a speed. That is,

lim
t→∞

XN(t)

t
= γN a.s and in L1 (3.4)

for some constant γN .

Unfortunately, we do not know yet whether γN is strictly positive, though we con-

jecture that it is. See the further questions below and Remark 3.5 in Section 3.5 for

more details on this conjecture.

The proof of Theorem 5 requires the following two technical lemmas. The first tells

us that with high probability, the particles do not spread out too far. In particular,

the statement concerns the distance between the first particle and the last particle.

The proof relies on the fact that a single BBM cannot spread out too far; even though

we have multiple branching Brownian motions and there is interaction, the spread

of the particles can be related to the spread of a single BBM in a tangible way.

Lemma 7. For all ε > 0 and t > (1 + ε) lnN ,

P (|X1(t)−XN(t)| > 8 (1 + ε) lnN + L) ≤ 2

N ε
+

Cε
N ε/2

(3.5)
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In particular,

lim
N→∞

P (|X1(t)−XN(t)| > 8 (1 + ε) lnN + L) = 0 (3.6)

Notice that the bound on the distance depends on N and ε but not on t. We have the

explicit representation Cε = 2+ε
ε

. Once we know that the particles are relatively close

to each other with high probability, independent of t, we can choose an appropriate

collection of sets to show that in the shifted system, the induced measures on RN are

tight.

Lemma 8. {Z(t)}t∈R+ is tight. That is, for every ε > 0, there exists a compact set

Kε such that P(Z(t) ∈ Kc
ε) < ε for all t.

These lemmas are proven in Section 3.3. We end this introductory section with a

few open questions.

Further Questions The results here imply only that the system has some speed, not

that this speed is positive. We believe that this speed should be positive. In fact, we

make the conjecture that γN is exactly the one-dimensional Brunet-Derrida particle

speed, so mirroring a result from [6], we conjecture that as N →∞, γN →
√

2. An

intuitive argument for why this should be the limiting speed can be found in Remark

3.5 in Section 3.5.

Another open question is the convergence of the empirical distribution to a limiting,

absolutely continuous measure whose density is a solution to a specific free boundary

PDE.

Conjecture 9. Let µNt = 1
N

∑N
k=1 δXk(t) be the empirical measure of the N-BBM

process with fitness function V (X) = x + Ψ(x) for Ψ a periodic function. Then

µNt (dx) converges weakly as N →∞ to a measure u(x, t) dx in the space of measure-
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valued processes D([0, T ],M1) and u(x, t) is the solution to the free boundary PDE

ut =
1

2
uxx + u x ∈ R, t > 0∫

Ω`(t)

u(x, t) dx = 1 for all t

u(x, t)|∂Ω`(t) = 0 for all t

(3.7)

where such a solution exists.

The equation for ut is the equation satisfied by a BBM with rate 1. The integral

condition regulates the growth, which reflects the influence of the constant system

size. However, because the particles can be moving, the domain of that integral can

change, giving a free boundary condition. V (x) is not explicitly apparent in the

statement of this PDE, but V (x) will influence the free boundary `(t).

Computational simulations of the process support this conjecture, but we have been

unable to prove it analytically. Computer-generated plots comparing the solution to

the PDE and particle system simulations can be seen in Section 3.5.

3.3 Proof of Theorem 5

We are seeking to prove that the shifted chain Z(t) is positive Harris recurrent. We

begin with the proof of Lemma 7, which captures the idea that the alive particles

do not spread out too far from one another. This is not immediately obvious. We

know that the distance between the maximal and minimal particles in a standard

branching Brownian motion at time t has order t. So without selection, the first and

last particles drift farther apart as time goes on. Lemma 7 says that this is not true

in this N-BBM system; there is probabilistic bound on the likelihood of the front

and back particles being too far apart, where the spread is independent of t.
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3.3.1 Spread of the Particles

Our first lemma concerns free binary BBM: branching Brownian motion with no

selection. From the definition of N -BBM with selection given in 2.2.2, it is clear

that for each N -BBM process, we have an associated free BBM process given by

Y (t) = (Y1(t), . . . , YN(t)) where each Yi is an independent binary, rate 1 BBM. This

process simply ignores the type of each particle and only describes the underlying

movement and branching structure. We prove a result about how long it takes a

single binary BBM, Ŷ (t), to grow to size M . We will use Ulam-Harris notation to

refer to the particles in Ŷ (t). Here, if τv is the birth time of particle Ŷv and u ≤ v

with τu < t, then we define Ŷv(t) = Ŷu(t) for t < τv (that is, when referring to a

particle’s position before its birth time, we are actually referring to the position of

its ancestor alive at that time).

Lemma 10. Let Ŷ (t) be a free binary branching Brownian motion with branch rate

λ. Let τk = inf{t ≥ 0
∣∣ |Ŷ (t)| = k} be the birth time of the kth particle. Then for

any M > 1, ε > 0,

P

(
τM >

(1 + ε) lnM

λ

)
≤ Cε
M ε/2

where Cε is a constant which depends only on ε.

Proof of Lemma 10. First, note that τk+1− τk
d
= Exp(λk) because there are k parti-

cles with independent rate λ branch clocks. With this in mind, we write

τM =
M−1∑
k=1

τk+1 − τk

where τ1 = 0. So τM is the sum of M − 1 independent exponentials. This means
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that for θ < λ, we have

E
[
eθτM

]
=

M−1∏
k=1

E
[
eθ(τk+1−τk)

]

=
M−1∏
k=1

λk

λk − θ

≤ (M − 1)
λ

λ− θ

≤ M

1− θ/λ

where we have used the moment generating functions of the exponential random

variables to get the second equality. Now we apply the exponential Chebyshev in-

equality:

P

(
τM >

(1 + ε) lnM

λ

)
≤ e−θ(1+ε)(lnM)/λ

E
[
eθτM

]
≤M−θ(1+ε)/λ M

1− θ/λ

Choosing θ such that θ/λ = 2+ε
2+2ε

, we get that

P

(
τM >

(1 + ε) lnM

λ

)
≤ CεM

−ε/2

where Cε = 2+2ε
ε

.

This bound holds for all ε > 0 but is only useful for ε sufficiently large, in terms of

M , because Cε → ∞ as ε → 0+. Now we are ready to prove that the particles do

not spread out too much over time, i.e. no more than a constant which depends on

N .
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Proof of Lemma 7. We introduce the following quantities for ease of reference:

T = (1 + ε) lnN

R = 2T

Let uk(t) be the index of the kth rightmost type A particle at time t. Then for any

t ≥ s, we define

F s
k (t) = {u ∈ At

∣∣ uk(s) ≤ v}

The set F s
k (t) is the set of indices of the free particles at time t which are descendants

of Yuk(s)(s), the kth rightmost type A particle in Y (s). This set allows us to keep

track of both type A and D descendants of Xk(s) at a later time t. Finally, define

N s(t) be the set of all indices of free particles at time t of type A or D which were

offspring of particles alive at time s

N s(t) =
N⋃
k=1

F s
k (t)

Also of importance will be the events (recalling that L is the selection window for Φ

defined in Section 3.1)

At = {|X1(t)−XN(t)| > 4R + L}

Bt =

{
sup

s∈[t−T,t]
|Yu(s)− Yu(t− T )| < R for all u ∈ N t−T (t)

}
∩
{
|F t−T

1 (t)| ≥ N
}

which can be defined for all t ≥ T . Event Bt is the event which bounds the movement

of all particles at time t from its alive ancestor at time t− T and specifies that the

number of descendants of the leading type A particle at time t−T has grown to size

N by time t.

By the definition of R and At, it is clear that

P(At) = P (|X1(t)−XN(t)| ≥ 8 (1 + ε) lnN + L)
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We will prove the lemma first by showing that At ⊆ Bc
t , and then giving a bound on

P(Bc
t ).

We will show that P(At ∩ Bt) = 0. When Bt occurs, each free particle satisfies

|Yu(t) − Yu(t − T )| ≤ R. Let x0 = X1(t − T ). When Bt occurs, each Yu(t) with

u ∈ N t−T (t) satisfies the relationship

Yu(t) ≤ Yu(t− T ) +R

≤ x0 +R
(3.8)

The second inequality follows from the definition of x0, as it is the maximal type A

particle at time t− T . Since X1(t) must be one of the particles Yu(t), Equation 3.8

also says

X1(t) ≤ x0 +R (3.9)

We will be done if we can bound XN(t) from below. To do this, we break the possible

process behaviors into two cases. Let t∗ = min{s > t− T
∣∣ |F t−T

1 (s)| ≥ N}. Notice

that when Bt occurs, t∗ ≤ t.

Case 1: If XN(s) < min
u∈F t−T1 (s)

Yu(s) − L for all s ∈ [t − T, t∗), then no offspring of

Yu1(t−T )(t−T ) is removed by selection before time t∗. Since |F t−T
1 (t∗)| = N and none

of these particles were selected before time t∗, we know that all type A particles at

time t∗ must be descendants of X1(t− T ). Because type A particles can only come

from a type A ancestor, this means that all the type A particles at time t are also

descendants of X1(t− T ). By the definition of Bt, all the offspring of Yu1(t−T )(t− T )

must remain within R of Yu1(t−T )(t−T ). Therefore, XN(t), a type A particle at time

t, must be bounded below by

XN(t) ≥ Yu1(t−T )(t− T )−R

= x0 −R
(3.10)
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Combining 3.10 with 3.9, we get the bound

|X1(t)−XN(t)| ≤ 2R (3.11)

Therefore, in this case, |X1−XN | < 4R+L, so At and Bt cannot occur at the same

time in this case.

Case 2: Suppose there exists an s ∈ [t−T, t∗) such that XN(s) ≥ min
u∈F t−T1 (s)

Yu(s)−L;

then selection from offspring of X1(t− T ) can occur before t∗. Define

s∗ = min{s > t− T
∣∣ XN(s) ≥ min

u∈F t−T1 (s)
Yu(s)− L}

Then,

XN(s∗) ≥ min
u∈F t−T1 (s)

Yu(s)− L

≥ x0 −R− L
(3.12)

We obtain the second inequality above by noting that every particle with an index

in F t−T
1 is a descendant of X1(t−T ), so given that Bt occurs, it can be no more than

R away from x0 at time s∗.

To extend this bound to time t, notice that any type A particle at time t is a

descendant of a type A particle at time s∗. The leftmost type A particle at time s∗ is

XN(s∗) and satisfies the inequality XN(s∗) ≥ x0−R−L. Due to the restriction that

children travel no more than R from their t−T ancestors, YuN (s∗)(t−T ) ≥ x0−2R−L.

Therefore all descendants of alive particles at time s∗ had ancestors at time t − T

with positions to the right of x0 − 2R− L. So because XN(t) must be a descendant

of one of these alive particles at time s∗,

XN(t) ≥ x0 − 3R− L (3.13)
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We combine this bound with 3.9 to get

|X1(t)−XN(t)| ≤ 4R + L (3.14)

Again, if |X1(t)−XN(t)| ≤ 4R+L, At cannot have occurred, so At∩Bt is the empty

set in this case as well. Therefore, At ∩Bt = ∅, so P(At) ≤ P(Bc
t ).

We now find a bound on P (Bc
t ).

P(Bc
t ) ≤ P(|F t−T

1 (t)| < N)

+ P

(
sup

s∈[t−T,t]
|Yu(s)− Yu(t− T )| ≥ R for some u ∈ N t−T (t)

)
(3.15)

Noticing that P(|F t−T
1 (t)| < N) = P(t∗ > T ), we can use Lemma 10 to see that

P(|F t−T
1 (t)| < N) ≤ Cε

N ε/2
(3.16)

To bound the final term in 3.15, let B(t) be a BM started at 0 and write

P

(
sup

s∈[t−T,t]
|Yu(s)− Yu(t− T )| ≥ R for some u ∈ N t−T (t)

)

≤ 2E

 ∑
u∈N t−T (t)

1

{
sup
s≤T
|Yu(s)− Yu(t− T )| > R

}
= 2E[N t−T (t)] P

(
sup
s≤T

B(t) > R

)
= 4E[N t−T (t)] P(B(T ) > R)

= 4NeTP(B(T ) > R)

≤ 2N2+ε ·N−2(1+ε)

= 2N−ε
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where we have use the reflection principle and the last inequality is obtained from a

common Gaussian tail bound (see Appendix A, Theorem 38). So

P

(
sup

s∈[t−T,t]
|Yu(s)− Yu(t− T )| ≥ R for some u ∈ N t−T (t)

)
≤ 2N−ε (3.17)

Combining the fact that P(At) ≤ P(Bc
t ) and Inequalities 3.15, 3.16, and 3.17, we see

that

P(At) ≤
2

N ε
+

Cε
N ε/2

(3.18)

Notice that lim
N→∞

P(At) = 0 as desired. This concludes the proof of Lemma 7.

3.3.2 Tightness of Shifted Process

Next, we want to show tightness of the measures induced by the shifted system Z(t);

that is, we want to find a compact set Kξ such that for each t, P(Z(t) ∈ Kξ) ≥ 1− ξ

for any ξ > 0.

Proof of Lemma 8. Fix ξ > 0 and N ≥ 2. Choose η to be sufficiently large such that

2

N ε
+

Cη
Nη/2

<
ξ

2
(3.19)

We know that this can be done because the constant Cη gets smaller as η gets larger.

We define

M = 8 (1 + η) lnN + L (3.20)

and K1 = [−π,M + π]N . Because Z(t) preserves the order of the particles in X(t),

P(Z(t) ∈ K1) = 1− P(|X1(t)−XN(t)| > M)

Applying the previous theorem, we can see that for all t > (1 + η) lnN ,

P(|X1(t)−XN(t)| > M) ≤ ξ

2
< ξ
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so P(Z(t) ∈ K1) ≥ 1 − ξ for all t > (1 + η) ln(N). To consider t ≤ (1 + η) lnN , we

define a new compact set K2 = [−π,M + 2Iξ + π]N where Iξ is chosen so that

P(X1(0) > Iξ) + P(XN(0) < −Iξ) ≤
ξ

2
(3.21)

Then we have that

P(|X1(t)−XN(t)| >M + 2Iξ) ≤ P(|X1(t)−XN(t)| > M − L
2

+ 2Iξ)

≤ P(|X1(0)−XN(0)| > 2Iξ)

+ P

(
|X1(t)−XN(t)| > M − L

2
+ 2Iξ

∣∣∣|X1(0)−XN(0)| ≤ 2Iξ

)

If all particles stay within 2(1 + η) ln(N) of their original positions up to time (1 +

η) ln(N) and all particles started within 2Iξ of each other, then |X1(t) − XN(t)| ≤

4(1 + η) ln(N) + 2Iξ = M−L
2

+ 2Iξ. Therefore, we can bound the second probability

from above by the probability that at least one of the N BBMs has a particle leave

the tube of radius 2(1 + η) ln(N). Using an identical calculation to the one used to

get Equation 3.17, we can see that this probability is therefore bounded by 2N−η as

before.

P(|X1(t)−XN(t)| > M + 2Iξ) ≤ P(|X1(0)−XN(0)| > 2Iξ)

+ P

(
|X1(t)−XN(t)| > M − L

2
+ 2Iξ

∣∣∣|X1(0)−XN(0)| ≤ 2Iξ

)

≤ ξ

2
+ 2N−η

≤ ξ

2
+
ξ

2
= ξ

where the last inequality comes from our initial choice of η. Therefore,

P(Z(t) ∈ K2) > 1− ξ
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for t ≤ (1 + η) ln(N).

Because the union of compact sets is compact, we let Kξ = K1 ∪ K2 = [−π,M +

2Iξ + π], and we get that for all t,

P(Z(t) ∈ Kξ) ≥ 1− ξ

Therefore, the collection of random variables {Z(t)}t is tight.

3.3.3 Harris Chain Definitions and Proof

We continue towards the proof Z(t) is a positive recurrent Harris chain. First, we

give the necessary definitions, including defining precisely Harris recurrence, positive

Harris recurrence, and petite sets - special sets which are representative enough that

determining Harris recurrence on that set gives Harris recurrence of the process. We

use the notation of [17].

Let S(t) be a time homogeneous Markov process with state space (X,B) with transi-

tion semigroup P t. Suppose the process evolves on the probability space (Ω,F , Px),

where S(0) = x ∈ X. For each measurable set A, we define

ηA =

∫ ∞
0

1S(t)∈A dt (3.22)

If there exists a finite measure ϕ such that the event {ηA = ∞} holds a.s. for all

A with ϕ(A) > 0, then Z is called Harris recurrent. We use the idea of Harris

recurrence as a way of making precise the idea of recurrence for a Markov chain in

an uncountably infinite state space, like RN . ηA is a random variable defined as the

amount of time S(t) spends in the set A.

It is known that a Harris recurrent right process has an essentially unique invariant

measure. If this invariant measure π is a finite measure, then we call S positive

Harris recurrent.
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The work of Meyn and Tweedie [17] gives two useful characterizations of Harris

recurrence, which we will use when we get to the proof of Theorem 5 below. These

characterizations require the idea of a sampled chain and the associated petite sets.

We define only a very special case of the sampled chains discussed in [17]. A T-

skeleton chain of S(t) is the chain Sk = S(kT ) for some fixed time T . A ϕ-petite set

for a T -skeleton chain is a set A ∈ B such that there exists a non-trivial measure ϕ

with PT (x, ·) ≥ ϕ(·) for all x ∈ A.

We now put these definitions in context for the shifted process Z(t). We will reference

several theorems from Meyn and Tweedie [17], which are also stated in Appendix

A for ease of reference. The state space of Z(t) is [−π,∞)N−1 × [−π, π). Fix an

ξ ∈ (0, 1) and define η as in the proof of Lemma 8. Define Zk to be the discrete time

T -skeleton chain of Z(t) with T = (1 + η) lnN . That is, Zk = Z(kT ) for all k ∈ Z+.

We show a petite set for this sampled chain.

Lemma 11. Let Cξ = M + 2Iξ as defined above in 3.19, 3.20, 3.21. Then K̂ξ =

[−π,Cξ + π]N−1 × [−π, π) is ϕ-petite with ϕ(dx) = p dx on C and 0 on K̂c
ξ , where

p = e−TN
[

inf
(x,y)∈[−π,Cξ+π]2

Φ(x− y, T )

]N
> 0

and Φ(x− y, T ) = 1√
2πT

e−(x−y)2/2T is the transition density for a single

one-dimensional BM run for time T , starting from x.

Proof. We need to show that Pt(x, A) ≥ ϕ(A) for all x ∈ K̂ξ, A ∈ B. Certainly

for A ∩ K̂c
ξ , this is true, as the measure ϕ is 0. Therefore, it suffices to show this

for a measurable set A ⊂ K̂ξ. Let x ∈ K̂ξ be our starting position with x =

(x1, x2, . . . , xN) and let µ(A) be the Lebesgue measure of A. Then we know that

32



PT (x, A) ≥ P(no branches before time T and X(t) moves from x→ A)

= e−NT · P(an N -dim. BM moves from x→ A)

= e−NT ·
∫
A

ΠN
i=1Φ(xi − yi, T ) dy

≥ e−NT ·
(

inf
(x,y)∈[−π,Cξ+π]2

Φ(x− y, T )

)N ∫
A

dy

≥ e−NT
(

inf
(x,y)∈[−π,Cξ+π]2

Φ(x− y, T )

)N
µ(A)

= pµ(A)

= ϕ(A)

This shows that K̂ξ satisfies the definition of a ϕ-petite set.

Using this petite set, we can show that Z(t) is positive Harris recurrent.

Proof of Theorem 5. Theorem 3.3 of [17] states that if K̂ξ is a petite set and Px(τK̂ξ <

∞) = 1 for all x ∈ [−π,∞)N−1 × [−π, π), where τK̂ξ = inf{k
∣∣ Zk ∈ K̂ξ}, then Z(t)

is Harris recurrent. Here we are using the fact that the first hitting time of K̂ξ

by Z(t) is bounded above by TτK̂ξ , so it is enough to bound the expectation and

probability of the hitting time by Zk. By Lemma 7, we can see that the probability

of being outside that K̂ξ at time kT is bounded from above by ξ. So we can say

that τK̂ξ is stochastically dominated by a geometric random variable: τK̂ξ � G where

G
d
= Geo(1 − ξ) because the chance the process is outside Kξ at any time t is

bounded above by ξ. Therefore, for all x, Px(τKξ < ∞) = 1. Therefore, Z(t) is

Harris recurrent by Theorem 3.3 of [17].

To say that this chain is positive Harris recurrent, we use Theorem 1.2(a) of [17],

which says that Z(t) is positive Harris recurrent if and only if there exists a closed
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petite set C such that for some δ > 0,

sup
x∈C

Ex[τC(δ)] <∞ (3.23)

where τC(δ) is the first return time to C after time δ.

Notice that K̂ξ is closed in the state space of Z(t). Because our bound on the

probability that the process is outside of K̂ξ at time t does not depend on the starting

configuration, we can use the same stochastic dominance in this case as above to say

that

sup
x
Ex[τK̂ξ ] <∞ (3.24)

for all x ∈ [−π,∞)N−1 × [−π, π). This means that

sup
x∈K̂ξ

Ex[τK̂ξ(1)] <∞ (3.25)

Therefore, Z(t) is positive Harris recurrent, which implies that Z(t) has a unique

invariant distribution.

3.4 Proof of Theorem 6

Now we want to show that the existence of a stationary distribution for Z(t) implies

there is speed for the system. We will use Birkhoff’s ergodic theorem to make a

statement about the speed of the system.

Proof. Recall that we have defined ZN(t) as the last component of the process Z(t)

and k(t) as the process which keeps track of the true spatial location of the process

at time t. For any t, we can write

XN(t)

t
=
ZN(t) + 2πk(t)

t

=
ZN(t)

t
+ 2π

k(t)− k(τm(t))

t
+ 2π

∑m(t)
j=1 k(τj)− k(τj−1)

t

(3.26)
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where the τj’s are the branch times of X(t) and m(t) is the total number of branch

events up to time t. So τj − τj−1
d
= Exp(N) and m(t)

d
= Poi(Nt). We let τm(t) be

the most recent branching time before time t. Notice that because the distribution

of k(τj)−k(τj−1) depends only on Z(τj−1) and we know that the distribution of Z(t)

the stationary distribution for all times, the distribution of k(τj) − k(τj−1) is the

same for all j. This means that each term in the sum is identically distributed. So

we can apply Birkhoff’s ergodic theorem to say that

lim
t→∞

XN(t)

t
= lim

t→∞

ZN(t)

t
+ 2π

k(t)− k(τm(t))

t
+ 2π

∑m(t)
j=1 k(τj)− k(τj−1)

t

= 0 + lim
t→∞

2π
k(t)− k(τm(t))

t
+ 2πEπ[k(τ1)− k(0)] lim

t→∞

m(t)

t

= 0 + 2πNEπ[k(τ1)] a.s and in L1

(3.27)

The limit of the first term is 0 because ZN(t) ∈ [−π, π]. Because k(τ1)− k(0) can be

bounded by the number of 2π-increments traveled by the maximum of N BMs in an

exponential amount of time, we can use the fact that the maximum is exponentially

unlikely to travel more than
√

2τ1 +a where τ1
d
= Exp(N) to say that Eπ[k(τ1)] <∞.

That fact also allows us to say that because k(t)−k(τm(t)) ≤ supτm(t)≤s≤τm(t)+1
k(s)−

k(τm(t)), and this supremum is summable by the same argument, the limit of the

second term also goes to 0. The last equality also relies on the fact that m(t) is

Poisson with mean Nt, so m(t)/t converges a.s. and in L1 to N (see Appendix A).

Therefore, we have the following limit

lim
t→∞

XN(t)

t
= 2πNEπ[k(τ1)]

= γN a.s and in L1

(3.28)

for some γN <∞. Therefore, we have shown that the system has a speed.
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3.5 Computational Results

We will use the specific case of Ψ(x) = 2 sin(x) to demonstrate several aspects of

the system, with simulations done in MATLAB R2016a. In this case, V (x) is not

monotonic, and for this choice of V (x), the finite particle system displays two distinct

types of behavior: either the system moves through space, or the system becomes

trapped in the peak of a local fitness maximum. We will look at each of these types

of behavior separately. Note that the simulations were done using rate
√

2 BMs.

Moving Behavior In some simulations, the particles move to the right at a speed

comparable to the speed of a linearly selected system. Figure 3.1a shows a comparison

between particles selected according to V (x) = x + 2 sin(x) (periodic selection),

and particles selected according to V (x) = x (linear selection). In this simulation,

the birth times of the particles are coupled, which makes the comparison easier to

visualize. Particles are all started from x = 2. Figure 3.1b shows the position of the

particles when the simulation ended. In this figure, a gap occurs in the positions of

particles subject to periodic selection. This split is positioned around a local fitness

minimum. For a closer view of this phenomenon, see Figure 3.2. Both selection types

have a similar decrease in the density of particles at the front of the system.

If we consider a 2-dimensional version, with the radially-symmetric fitness function

V2(x) = ||x|| + 2 sin(||x||), we see similar results. We start all particles at (0,0) and

set the branch rate λ = .65. If you view the particles at fixed time intervals, you

can see that there are two groups of particles, with an unoccupied region in between

(see Figure 3.3). This unoccupied region runs along an arc, because the level sets

of V2(x) are circles. The particles themselves also appear to spread out along level

sets, which matches the behavior of particles subject to the the fitness function ||x||,

as described by Berestycki and Zhao in [6]. Other similarities to the 2-dimensional
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(a) A comparison of periodic selection and linear selection.

(b) The final positions of the particles, after 200,000 birth events.

Figure 3.1: In this simulation, N = 1000, λ = 1, and the positions of the particles
are plotted every 10N birth events, up to 200,000 births. The processes are coupled
through the birth times.
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Figure 3.2: When N = 1000, λ = 1, after 200,000 birth events, the particles have
a gap at the position of the corresponding fitness minimum. The fitness function
(plotted) is x+ 2 sin(x).

results of Berestycki and Zhao include the eventual propagation of the particles in

a fixed angular direction, which from simulation seems to be chosen uniformly at

random from [0, 2π).

Remark 3.5 The moving behavior of the periodic selection system appears to be

very close to the speed of the linear selection system in many simulations. To give

intuition behind this observation, consider the following heuristic argument. BBM

with N particles has a spread on the order of ln(N), and since the selection window L

is constant in N , once the particles have spread out, the particles outside the selection

window feel essentially monotonic selection. That is, they only feel selection pressure
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Figure 3.3: A simulation in two dimensions with N = 1000, λ = .65. The colors
represent different stopping times in the simulation, with positions plotted every 10N
birth events. The fitness function used here is V (x) = ||x||+ 2 sin(||x||).

from behind them, and they move at a speed similar to the one-dimensional Brunet-

Derrida particle speed, with a slightly different finite N correction. If o(N) particles

are found in the selection window as N →∞, then the finite N correction should be

the same up to o((logN)−2). While a direct coupling cannot be established to prove

this because of the nonzero probability that all particles are within the selection

window, this intuition leads us to believe that as N → ∞, γN →
√

2 as is found in

systems subject to monotonic selection.

Trapped Behavior For some simulations, instead of moving in any direction, the par-

ticles get stuck at the first local fitness maximum they encounter. In one dimension,

the particles remain close to zero, and the histogram density plot in Figure 3.4 gives
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Figure 3.4: In this simulation, N = 5000 and λ = 2. The particles have remained
trapped near the origin for 200,000 birth events. The histogram shows the density
of the final particle positions. The line is the conjectured stationary distribution.

an example of the distribution of the particles in this case.

In two dimensions, the particles form an annulus around the origin, as seen in Figure

3.5. The colors represent different times at which the positions were plotted.

Conjecture After observing the behavior of the particles in many simulations, we

made the conjecture that in one dimension, µNt (dx), the empirical measure of the

system, is a finite particle approximation of the measure u(x, t) dx where u(x, t)

satisfies the PDE

ut = ∆u+ λu∫
Ω`(t)

u(x, t) dx = 1 for all t

u(x, t)|∂Ω`(t) = 0 for all t

(3.29)
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Figure 3.5: A simulation in 2 dimensions with N = 1000, λ = 2. Again, the
colors represent the particle positions at stopping times, stopped every 10N births.
In contrast to Figure 3.3, the particles have not spread out, and instead remain
trapped in the annulus between −π and π.

with Ω`(t) = {x
∣∣ V (x) ≥ `(t)}. A computational comparison of the solution to 3.29

to the particle solution was done in Python 3.5 using the Kolmogorov distance (i.e.

the distance between the CDFs). At fixed times, we compared the CDF of u(x, t) dx

to the CDF of the empirical measure. Figure 3.6 shows a comparison of the CDFs at

T = 9. The graph shows that the convergence of the CDFs is slow at the singularity

of the PDE solution. Figure 3.7 shows the distance between the CDFs at T = 9 for

various values of N . Because the measures are random, simulations were run 100

times for each N , and the average of the squared Kolmogorov distance for each N

value was plotted. Values spanning N = 100 to 51200 were run. This free boundary

PDE can explain both behaviors observed by the simulations. The trapped behavior

is a result of the existence of a stationary solution for this PDE in certain parameter
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Figure 3.6: A comparison of the CDFs of the PDE solution and particle system
empirical measure at T = 9 with N = 51200.

regimes. Let m1 be a local minimum of V (x) and m0 = sup{x < m1

∣∣ V (x) =

V (m0)}; if m1−m0 >
π√
λ
, then there exists an a, b ∈ [m0,m1] such that V (a) = V (b)

and b− a = π√
λ
. If such an a and b can be found, then the stationary solution is

u(x, t) =

√
λ

2
sin
(√

λ(x− a)
)

for x ∈ [a, b]

u(a, t) = u(b, t) = 0

(3.30)

Figure 3.4 includes a plot of the conjectured stationary distribution compared to

the density of the particles after 200,000 birth events. With λ = 2 and V (x) =

x+ 2 sin(x), a ≈ 1.128 and b ≈ 3.350.

In higher dimensions, we still expect µNt (dx)→ u(x, t)dx with u(x, t) solving Equa-

tion 3.29. However, the precise form of the stationary solution is less clear, and
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Figure 3.7: A plot of the Kolmogorov distance squared, averaged over 100 trials
for each value of N . The Kolmogorov distance is between the particle system CDF
and the free boundary PDE solution CDF at T = 9. The x-axis is the number of
particles N , and the y-axis is the average of the distance squared.

smaller values of λ seem to be more conducive to the system moving, while higher

values of λ result in the stuck behavior. Some values of λ, including λ ≈ .65, give

regular occurrences of both stuck and moving behavior with N = 1000.
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4

N-BBM with a Symmetrically Decaying Fitness
Function

Now we consider an N-BBM with a continuous fitness function which is symmetric,

decays away from the origin, and has a unique local maximum at the origin. Such

a fitness function removes the particle farthest away from the origin at each branch

time. This system should no longer move with a positive speed, because the incentive

is to remain as close to the origin as possible.

The motivation for studying this problem arose from the study of the process in

Chapter 3. In particular, simulations showed that the population of particles can

get stuck in a fitness peak for a long period of time, rather than traveling across R.

When clustered in a single peak, the particles appeared to spread out in the shape of

a sinusoidal peak (see Figure 3.4). By removing all local peaks but one, we are able

to study precisely the behavior of the particles while they remain stuck in a single

peak. V (x) = −x2 is an example of a fitness function in the framework we consider.
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4.1 Relevant Previous Work

This problem is very similar to another well-known branching selection model, the

Fleming-Viot model, which defines a fixed boundary and redistributes particles when

they hit that boundary [9]. A precise version of the Fleming-Viot problem can be

expressed as follows. Begin N independent Brownian motions in the interval [a, b].

Allow them to move freely until they hit the boundary, at which point they jump to

the location of another particle in the system, chosen uniformly at random. It has

been shown that if b− a = π, then as N →∞, the particles remain in a stationary

distribution, with the (scaled) shape of sin(x) [9]. Studying the system with a free

boundary (that is, one that moves with the maximum and minimum alive particle)

requires different techniques than studying the process with the stationary boundary.

4.2 Main Results

In 2017, DeMasi et. al. [11] proved a hydrodynamic limit of N-BBM on R with

monotonic fitness. In this section, we explain how to generalize their results to in-

clude an N-BBM system subject to a symmetric fitness function which monotonically

decreases away from zero. One can consider V (x) = −x2 as a concrete example of

a function satisfying these conditions. Our main theorems are the corresponding

hydrodynamic limit and the description of the limiting object in terms of a free

boundary PDE.

To state our first theorem, we define µNt to be the empirical measure of the system

at time t:

µNt =
1

N

N∑
k=1

δXk(t) (4.1)

Let ρ be a function with ρ ∈ L1(R,R+) and ρ even and satisfying ||ρ||∞ < ∞ and

M0 = supr

{∫ r
−∞ ρ(x) dx = 0

}
> −∞.
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Theorem 12. Let X(t) ∈ R
N be a system of N-BBMs on R with fitness function

V (x) which is symmetric about 0 and strictly decreases as |x| → ∞. Choose each

Xk(0) independently and identically according to a density ρ, where ρ satisfies the

conditions above. Then for every t ≥ 0, there exists a probability density function

Ψ(x, t) such that for any a ∈ R, we have

lim
N→∞

∫ ∞
a

µNt (dx) =

∫ ∞
a

Ψ(x, t) dx (4.2)

almost surely and in L1.

Theorem 13. Suppose that (u(·, t), `(t)) is a solution to the free boundary problem

ut = uxx + u − ` ≤ x ≤ `, t > 0∫ `(t)

−`(t)
u(x, t) dx = 1 for all t

u(`(t), t) = u(−`(t), t) = 0 for all t

u(0, x) = ρ(x)

(4.3)

on the time interval [0, T ] for some T > 0 with `(t) continuous. Then the limiting

function Ψ in Theorem 12 satisfies Ψ(x, t) = u(x, t) for t ∈ [0, T ].

4.3 Generalization of DeMasi et. al. Results

We use the same notation as in the previous chapter, letting X(t) represent the

system of N particles at time t. Then define R(0) to be the reflected initial config-

uration, with each particle strictly below 0. That is, Ri(0) = −|Xi(0)| for all i. We

couple X(t) to R(t), a system of reflecting BBMs by letting Rk(t) = −|Xk(t)| for all

particles k and all times t.

Notice that R(t) has the same law as a system of N branching Brownian motions re-

flected at 0, with selection at the leftmost edge, where the initial location of particles
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is chosen according to the density ρ̃

ρ̃(x) =

{
2ρ(x) x ≤ 0

0 x > 0
(4.4)

The particle selected at branch time τ in X is coupled to the particle at the leftmost

edge of R(τ), because the selection choice only depends on the relative absolute value

of the particles’ positions, not the sign of the position. Therefore, the law of selection

in the reflected system is selection according to the fitness function V (x) = x.

Similar to Chapter 2, we will choose to couple a system of reflecting BBMs subject

to selection to a free system of reflecting BBMs, without any selection. Whenever

we do this, we will do so by letting the coupled particles use the same Brownian

increments and coupling the birth times. To be precise, suppose we want to couple a

free system of branching Brownian motions, S(t), to R(t), each a system beginning

with N reflecting BMs, but R(t) having selection and S(t) being free. Then for each

1 ≤ i ≤ N , we have Ri(t) defined by

dRi(t) = dBi(t)− dLRi (t)

for some Brownian motion Bi(t) and a unique local time process

LRi (t) = limε→0
1
2ε

∫ t
0
1{x − ε ≤ Bi(s) + ri ≤ x + ε} ds, with ri = Ri(0) ∈ R−. The

coupled particle in S(t) is defined by

dSi(t) = dBi(t)− dLSi (t)

with Bi(t) the same Brownian motion used in the definition of Ri(t), but with Si(0) =

si ∈ R
− not necessarily equal to ri and therefore LRi (t) not necessarily equal to

LSi (t) = limε→0
1
2ε

∫ t
0
1{x−ε ≤ Bi(s)+si ≤ x+ε} ds. When selection occurs in R(t),

we mark the corresponding particle in S(t) as removed, but allow it to continue to

branch using an independent reflected BBM. At each branch time, particles must be
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relabeled appropriately to maintain the ordering. We use the labeling procedure of

DeMasi et. al. and do not give a description here. See [11] for full details.

Using this method of coupling for reflected BM is important because it maintains

the monotonicity of the system; that is, if Si(0) ≥ Ri(0), then Si(t) ≥ Ri(t) for all

time (and vice versa) when Si and Ri are coupled particles. If one system has fewer

particles than the other, the coupling is the same, but there will be particles which

are not coupled between the systems. If the free system has more particles, allow

those particles to behave as independent reflected BBMs. If the selection systems

has more particles, the extra particles will not be coupled to particles in S(t).

In [11], the proof proceeds in the following way. First, the system is coupled to

a upper bounding process and a lower bounding process. The upper and lower

processes are obtained by strategically enforcing selection only at times kδ, where

the length of the time interval, δ, is fixed. They show the leftmost edge of the particles

remains between the leftmost edge of each of the coupled bounding processes. Then

it is shown that in the limit as N → ∞, the position of the leftmost edges of these

bounding processes converges to known upper and lower deterministic boundaries.

Finally, they show that as δ → 0, the two deterministic boundaries converge to the

same limit. Because of the coupling, we can say that the true hydrodynamic selection

boundary also converges to that limit. Then all that remains is to show that the

density converges to the solution of the desired free-boundary problem.

For the intermediate results, the proofs from [11] translate directly. This is because,

as pointed out above, when we couple X(t) to a system of negative reflected BBMs,

the fitness function becomes V (x) = x, as it is in [11].

We define the following ordering between particle systems, which allows us to pre-

cisely define an upper and a lower bounding stochastic process.

If X(t) = (X1(t), X2(t), . . . , XN(t)) and Y (t) = (Y1(t), Y2(t), . . . , YM(t)) with M ≥

48



N , then we say that

X(t) � Y (t) if and only if |X ∩ [a,∞)| ≤ |Y (t) ∩ [a,∞)|

Stochastic Bounds We define the two bounding particle selection systems.

Upper Bound Process Fix δ > 0. We will define an upper-bounding process U δ(kδ) =

{U δ
i (kδ)} iteratively for k ∈ N.

Define U δ(0) = R(0). Assume that U δ((k − 1)δ) is defined. Let Sδ(t) be a free

reflected BBM coupled to R(t) with initial particles positions U δ((k− 1)δ). At time

t = kδ, we select the rightmost particles in Sδ(δ) to include in U δ(kδ), removing the

rest. Therefore, there are only N particles in U δ(kδ) for all k ∈ Z. That is,

U δ(kδ) =
{
Sδi (δ

−)
∣∣∣ #{Sδj

∣∣∣ Sδj (δ−) > Sδi (δ
−))} < N

}
(4.5)

where

U δ
j (kδ−) = lim

t→kδ−
U δ
j (t) (4.6)

To understand why we call this an upper-bounding process, suppose that U δ((k −

1)δ) � R((k − 1)δ). Between the selection events, the particles will remain ordered

because two reflected BMs which are coupled through the Brownian increments do

not intersect, except possibly at x = 0. If a particle in R(t) jumps during the time

increment, then it moves to become coupled with a different particle in Sδ(t−(k−1)δ).

This implies that the particle systems remain ordered between the kδ times. At

t = kδ, we choose the N most fit particles from Sδ(δ−) to keep. Therefore, since

Sδ(t− kδ−) � Rkδ− , we have that U δ(kδ) � R(kδ). Through the iterative definition

and the fact that U δ(0) = R(0), we can see that U δ(kδ) � R(kδ) for all k ∈ N.
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Lower Bound Process We can also create a process which bounds R(t) from below.

We define Dδ(kδ) in a similarly recursive manner. Let Dδ(0) = R(0). Again suppose

that Dδ((k − 1)δ) is defined.

In the lower bounding process, selection for the time increment ((k−1)δ, kδ] happens

at time (k−1)δ, rather than at kδ as in the upper bounding process. Again we couple

to R(t) a free reflected BBM Sδ(t). To determine which particles are kept in Dδ(kδ),

we remove particles from left to right such that, after being allowed to evolve freely

for time δ, the number of particles in Dδ(kδ) is less than or equal to N . To define

this precisely, let

L(k−1)δ = min

a ∈ Dδ((k − 1)δ)
∣∣∣ |Dδ((k−1)δ)|∑

i=1

N i
kδ1{Sδ,i(0) ≥ a} ≤ N


where N i

kδ is the number of offspring of Sδ,i(0) alive at time δ. With this barrier

defined, we can define

Dδ(kδ) =
{
Sδ,i(δ)

∣∣∣ Sδ,i(0) ≥ L(k−1)δ

}
(4.7)

where we have abused notation slightly in the standard way by allowing Sδ,i(0) to be

the position of the ancestor of the particle Sδ,i(δ) if the particle is not alive at time

0. Because we remove particles at time (k − 1)δ based on the behavior at kδ, we

remove entire families of particles, rather than a single particle at a time as we did

in defining the upper bounding process. This means that Dδ can have fewer than N

particles contained in it.

There are some technicalities to be aware of when defining the coupling at jump

values for the lower bounding process. See [11] for a careful description of the label

reassigning that must occur to maintain the appropriate ordering.
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Deterministic Bounds To define the deterministic barriers, let the heat kernel for

Neumann boundary conditions at x = 0 (the reflected heat kernel) be defined as

Gtu(x) =

∫ 0

−∞

1√
2πt

(
e−(x−y)2/2t − e−(x+y)2/2t

)
u(y) dy (4.8)

and define the cut operator to be

Cmu(x) = u(x)1

{∫ 0

x

u(y) dy < m

}
for x ≤ 0 (4.9)

From there, define the upper deterministic barrier to be

Dδ,+
0 ρ̃ = ρ̃ and Dδ,+

kδ ρ̃ = (C1eδGδ)
kρ̃ (4.10)

and the lower deterministic barrier to be

Dδ,−
0 ρ̃ = ρ̃ and Dδ,−

kδ ρ̃ = (eδGδCe−δ)
kρ̃ (4.11)

Notice that these behaviors mirror the selection behavior of the upper and lower

stochastic bounds described above. That is, in the upper bound, the process is

allowed to evolve and grow to size eδ, then is cut back down to mass 1. This is

repeated for each increment of time δ. For the lower bound, the process is first cut

to size e−δ, then allowed to evolve and grow to size 1 in an increment of time δ.

4.4 Proof of Theorems 12 and 13

Proof of Theorem 12. With this setup, the proofs in [11] translate directly. In par-

ticular, we can use [11, Theorem 1] to say that for every t ≥ 0, there is a density

function Ψ̃(·, t) : R→ R
+ such that for any a ∈ R,

lim
N→∞

∫ ∞
a

µ̃Nt (dr) =

∫ ∞
a

Ψ̃(r, t) dr a.s. and in L1 (4.12)

where µ̃Nt = 1
N

∑N
k=1 δRk(t) is the empirical distribution of R(t).
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We also know from [11, Theorem 2], modified to accommodate reflection, that this

Ψ̃(·, t) coincides with the solution to the free boundary PDE, (ũ(·, t), `(t)) for t ≤ T ,

ũt =
1

2
ũxx + ũ for x ∈ (`(t), 0)

ũ(x, 0) = ρ̃ for x > L0 and ũ(x, 0) = 0 for x < L0,

ũ(`(t), t) = 0 and

∫ 0

`(t)

ũ(x, t) dx = 1

ũx(0, t) = 0 t > 0

(4.13)

where L0 is defined as the largest value such that
∫ 0

L0
ρ̃(x) dx = 1.

Now that have applied these theorems to the reflected version of the process, we

must unfold the process back to R to make the necessary statements about µNt .

We will show that µNt (I+) − µNt (I) → 0 for any interval I ⊂ R
− and corresponding

positive interval I+, defined as the interval such that x ∈ I+ if and only if −x ∈ I.

This, combined with the application of the results from DeMasi et. al. [11] above

will be enough to prove the desired result.

Given a realization µNt (dx) of the process, we define the random variables Fk(t), the

families at time t. We say that two particles Xi(t), Xj(t) are in the same family if and

only if they have a common ancestor and neither Xi nor Xj has hit 0 since the time

of the most recent common ancestor. There are at most N distinct families Fk(t).

See that if we let F̃k(t) be collection of particles in the underlying free BBM which

are descendants of particle Xk(0), then there is a function κ on {1, 2, . . . , N} such

that |Fk(t)| ≤ |F̃κ(k)(t)|. That is, we can stochastically dominate the distribution of

maxk |Fk(t)| by the distribution of maxk=1,...,N Hk, where each Hk is an independent

Geo(e−t) random variable. This gives us the following lemma.

Lemma 14. Fix a time T > 0 and a constant α > 0. Then there exists a constant
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C such that

lim
N→∞

P

(
max
k

|Fk(T )|
C ln(N)

≥ α

)
= 0

.

Proof. Let F̃k(T ), F̃ (T ) be independent Geo(e−T ) random variables. Then

P(max
k
|Fk(T )| ≤ αC ln(N)) ≥ P(max

k
|F̃k(T )| ≤ αC ln(N))

=
N∏
k=1

P(|F̃k(T )| ≤ αC ln(N))

=
(
P(|F̃ (T )| ≤ αC ln(N))

)N
We want to show that this right hand side goes to 1 as N →∞. That is equivalent

to showing that

N ln
(
P(|F̃ (T )| ≤ αC ln(N))

)
→ 0

as N →∞. Because |F̃ (T )| d= Geo(e−T ), we know that

1− (1− e−T )αC ln(N) ≤ P(|F̃ (T )| ≤ αC ln(N)) ≤ 1− (1− e−T )αC ln(N)+1

Let x = (1− e−T )α and notice that 0 < x < 1. Plugging in, we have

N ln(1− xC ln(N)) ≤ N ln
(
P(|F̃ (T )| ≤ αC ln(N))

)
≤ N ln(1− (1− e−T )xC ln(N))

N(−xC ln(N))) ≤ N ln
(
P(|F̃ (T )| ≤ αC ln(N))

)
≤ N(−(1− e−T )xC ln(N)))

We can write x = e−b for some b, which allows us to write xC ln(N) = N−Cb. Pick

C = 3/b and we see that

−N ·N−3 ≤ N ln
(
P(|F̃ (T )| ≤ αC ln(N))

)
≤ −N(1− e−T )N−3

−1

N2
≤ N ln

(
P(|F̃ (T )| ≤ αC ln(N))

)
≤ −(1− e−T )

N2

Taking N →∞, we get the desired result.
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In fact, because the bound we proved decays to 0 so quickly, we can in fact apply

Borel-Cantelli to say that lim supN→∞
1

C ln(N)
maxk |Fk| < α a.s. as well.

We now prove a lemma regarding the convergence of the different between the mea-

sure of I and I+ a.s. and in L1.

Lemma 15. lim
N→∞

µNt (I+)− µNt (I) = 0 a.s and in L1.

Proof. First we show the L1 convergence. Let I ⊂ R
− be an interval and I+ be the

reflection of that interval to R
+. Define FI as the number of families in interval I

at time t, NI as the number of particles in I in the reflected system at time t, and

MN = maxk=1,...,FI |Fk| to be the maximum family size in interval I at time t in the

reflected system. Then we have that

lim sup
N→∞

MN

C ln(NI)
< α

almost surely for some C. This means that for any fixed ε > 0,

P(Mm < εC ln(mI) for all m ≥ N)→ 1

as N → ∞ (while this may seem like the introduction of new random variables,

Mm,mi are just defined as the random variables MN and NI with N = m). Let ξk

be i.i.d. uniform on {−1, 1}. Now define

YN =
1

N

FI∑
k=1

|Fk|ξk =

FI∑
k=1

akξk

which is equal in distribution to the difference between the measure of I+ and I

under µNt , with ak = |Fk|
N

. We want to show that YN goes to 0 in L1. We will in fact

show that it goes to 0 in L2.
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We see that

E[Y 2
n ] = E

[
FI∑
k=1

a2
k +

∑
k 6=j

akajξkξj

]

= E

[
FI∑
k=1

a2
k

]

because ξk, ξj are independent.

Now suppose we define Ỹk to be the random variables obtained by merging families

together until each group has at least εC ln(NI) members and has no more than

2εC ln(NI) members; the last group may have less than εC ln(NI) particles if there

are not enough particles left. Grouping in this way is possible if Mn < εC ln(N) (an

event which has probability 1 in the limit). Therefore, we can create the random

variable Ỹn where

Ỹn =

GI∑
k=1

ãkξ̃k

where again each ξ̃k is chosen i.i.d. uniformly from {−1, 1}. Let B be the event that

MN < εC ln(N). Then Ỹn has variance

E[Ỹ 2
n ] = E

[
GI∑
k=1

ã2
k

∣∣∣ B]P(B) + E

[
GI∑
k=1

ã2
k

∣∣∣ Bc

]
P(Bc)

≤ E

[(
NI

εC ln(NI)
+ 1

)(
2εC ln(NI)

N

)2
]
P(B) + 1 · P(Bc)

≤ E

[
4εC ln(NI)

NI

+

(
2εC ln(NI)

N

)2
]
P(B) + P(Bc)

Notice that because of the almost sure bound we have on MN , we know that P(Bc)→

0 as N →∞. So Var(Ỹn)→ 0 as N →∞. But in fact, ãk = ak1 + · · ·+akn(k) for some
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n(k). But (ãk)
2 ≥ (ak1)2 + · · ·+ (akn(k))

2 so

Var(Yn) ≤ Var(Ỹn)

for all n. Therefore, E[Y 2
n ]→ 0 as n→∞ as well and Yn converges in L2 and so also

converges in L1 as desired.

Next, we want to show that µNt (I+)− µNt (I)→ 0 a.s.

Consider an interval I with I ⊂ R
− and

∫
I

Ψ̃(x, T ) dx = CI > 0. Again we let NI be

the number of particles in I at time T . Clearly, this is a function of N and NI →∞

a.s. as N → ∞. Divide these NI particles into groups of size C ln(N) without

splitting up any families. In order to keep families together, we have to allow for

small error; that is, the sizes can be C ln(N) + ε for ε = o(ln(N)). We know that

the number of families of size 1 grows at least like e−TNI , and using these small

families allows us to make these groups the appropriate size once N is sufficiently

large. There will be G total groups with G = O(NI/ ln(N)). To each of these groups,

assign a random variable ξk which is −1 with probability 1/2 and 1 with probability

1/2. This variable will indicate whether the group belongs on the positive side of

the axis or the negative side of the axis. After assigning each group an ξk, we can

calculate SN = 1
N

∑G
k=1 |Gk|ξk, where |Gk| is the size of group Gk. This random

variable is the difference between the number of particles assigned to the right and

the number of particles assigned to the left, divided by N .
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As N →∞, we can see that

lim
N→∞

SN = lim
N→∞

1

N

G∑
k=1

|Gk|ξk

≤ lim
N→∞

1

N
(C ln(N) + ε)

G∑
k=1

ξk

≤ lim
N→∞

C̃
NI

N

1

G

G∑
k=1

ξk

= 0 a.s. and L1

by the law of large numbers (since G→∞ as N →∞ and the ξk are all independent

with E[ξk] = 0).

This is not quite enough however. Notice that S 6= µNt (I+) − µNt (I), because each

family was not assigned a side independently. However we make the following claim:

Claim: Any additional independent assignments will make make SN closer to 0

with probability p > 1
2
.

That is, suppose we pick a particle uniformly at random from the NI particles.

Suppose the selected particle is in group Gk. If the number of families in Gk is at

least 2, then we pick a family in Gk and assign it a new ξk′ and separate it into its

own group. This action has a probability p > 1/2 of making the new S ′N closer to 0.

To see this, suppose SN > 0. There are more particles assigned a +1 than particles

assigned a −1. Therefore, we are more likely to select a family which is assigned an

ξk = 1. Reassigning a family in that group will either keep SN the same or increase

the number of −1 assignments by reassigning a family to −1. Therefore, this will

move S ′N closer to 0 than SN . If a group assigned a −1 is selected, then S ′N will either

equal SN or be farther from 0. Because choosing a positive is more likely, there is

a greater probability of moving the sum towards 0 with each additional assignment

than away from it.
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We can repeat this process until all families are assigned an independent ξk. Because

the number of families goes to infinity as N →∞, the number of reassignments that

are needed will get large as N gets large. Therefore, the probability that the true

sum µNt (I+)− µNt (I) is closer to 0 than SN approaches 1 as N →∞.

This allows us to say that µNt (I+)− µNt (I)→ 0 as N →∞ a.s.

Therefore, since µNt (I+) + µNt (I)→ CI a.s. and in L1 and the previous lemma tells

us that µNt (I+) − µNt (I) → 0 a.s. and in L1, we know that µNt (I) → CI
2

a.s. and in

L1. This means that the mass in any interval I is evenly split between the positive

and the negative axes. This gives us the desired result: if

Ψ(x, t) =

{
Ψ̃(x,t)

2
x ≤ 0

Ψ̃(−x,t)
2

x > 0

then

lim
N→∞

∫ a

−∞
µNt (dx) =

∫ ∞
a

Ψ(x, t) dx

almost surely and in L1 for all a ∈ R. This concludes the proof of Theorem 12.

The proof of Theorem 13 is essentially one line.

Proof of Theorem 13. All that remains to prove this theorem is to say that because

Ψ̃ solves the reflected free boundary problem, wherever such a solution exists, then

Ψ(x, t) solves the desired free boundary problem on all of R. This is clearly true

because the initial conditions were chosen to be symmetric and the heat equation is

symmetric, so Ψ(x, t) matches the solution to Equation 4.3 wherever one exists.
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5

BBM with Branch Rate Interaction via the
Empirical Measure

5.1 Introduction

In this chapter, we study a BBM where the particle interaction occurs through the

branch rate of each particle. We allow the branch rate of each individual to be

a function of the empirical measure of the process, smoothed through convolution.

Defining a branch rate which depends on the empirical measure creates a nonlocal

effect; particles are affected by the entire configuration. We say that the interaction

between particles is weak because the influence of a single particle is on the order

1/N , where N is the number of initial particles.

5.1.1 Related Work

McKean-Vlasov SDEs Allowing particle systems to interact through the system’s

empirical measure is well-established. Historically, the interaction has been included

in the drift and diffusion terms in an interacting system of SDEs. In this case, taking

the hydrodynamic limit results in a solution to a McKean-Vlasov stochastic differ-

ential equation. This problem and its generalizations have been studied extensively
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(see for instance [19, 20]). In 1989, Oelschläger looked at a multitype branching pro-

cesses in which the dependence on the empirical measure is present in the branch rate

of the particles [21]. He considers the system with moderate interaction strength,

where the birth, death, and type transition rates of a single particle depend upon

the other particles in a neighborhood whose volume goes to 0 as N goes to infinity,

but which contains infinitely many particles as N goes to infinity. This is in contrast

to a weak interaction, where the neighborhood of interaction has a constant size. He

proves a hydrodynamic limit of the system to a general system of reaction-diffusion

equations. He claims, but does not show, that his results can be extended to the

case of long-range interactions between particles (i.e. weak interaction).

In this work, we show the corresponding theorem for weakly interacting branching

Brownian motions; however, we restrict to one type, rather than a multitype system.

We will show this for a class of rate functions, described in Equation 5.2 below.

Discrete Process with Mean-Dependent Rate The motivation for this problem, how-

ever, came from a different perspective. In particular, while the work done below is

for a positive, bounded, and Lipschitz rate function Λ, our interest in the problem

stems from one particular rate function which corresponds to the following behavior:

particles in front of the average position, call it Mt, branch at an instantaneous rate

Xk(t) −Mt, while particles behind the average position die at a rate Mt − Xk(t).

This model can be thought of as a continuous version of a model introduced by Yu,

Etheridge, and Cuthbertson [23]. In this paper, Yu, Etheridge, and Cuthbertson use

a Moran model to study populations whose fitness is evolving on Z. A particle’s

fitness can change via mutation (to the fitness above or below their current level),

via selection (where individuals of higher fitness replace those of lower fitness), and

through resampling (where an individual replaces another at a constant rate regard-

less of fitness). The discrete setup avoids many of the difficulties which arise in the
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continuous time version. In particular, the fitness of the particles does not continu-

ally evolve and the birth and death events are coupled together in the selection and

resampling events. Therefore, the number of particles at any time is fixed.

5.1.2 Contribution and Difficulties

Despite being motivated by the study of a system where the birth and death rates

are proportional to the distance from the mean, the proofs below do not encompass

the choice of Λ,Φ that is required in this case; we cannot yet prove the result for

the motivating example. While we extend the discrete model to the case of particles

whose fitness evolves continuously and allow for a changing population size, we have

restricted our study to a bounded, positive rate function. We would need to allow

the rate to be negative and unbounded in order to make statements about a system

in which the birth and death rates are proportional to the particle’s distance from

the mean. There are several considerations to take into account before extending to

a negative or unbounded rate function.

Incorporating death rates Incorporating particles dying can be done by allowing the

branch rate to be negative and interpreting negative branch rates as death rates. In

this case, one must consider the possibility of the system becoming degenerate at

some time. In the case described above where the birth/death rates are proportional

to a particle’s distance from the mean, the system will reach a state with only

one particle remaining with probability one. This particle will then continue as an

independent Brownian motion and no longer branch. One approach to overcoming

this difficulty could be to make the claim that the probability of reaching this state

before a fixed time T should go to 0 as N goes to infinity. After verifying this, the

proof of proving the hydrodynamic limit on the time interval [0, T ] would be similar

to the proof presented here.
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Incorporating unbounded rate functions Unbounded rate functions present more of a

problem than allowing particles to die. At several places in the proof of the theorem,

we rely on control of the number of particles alive at time t. This control is obtained

by using the maximum branch rate as an upper bound on the true branch rate. This

technical difficulty perhaps less daunting than the second difficulty introduced by

unbounded rates. Such a generalization also introduces the possibility of finite time

explosion of the number of particles (see [5] for one treatment of finite time explosion

in a noninteracting system of BBMs). Ensuring that there is no finite time explosion

of a system with unbounded branch rates would require substantially more delicate

analysis of the large deviation events of the process.

5.2 Formal Problem Statement

Let X1, . . . , XN be a collection of N binary BBMs. Allow their initial positions to be

independently distributed with density ρ. We let At be the collection of the indicies

of particles alive at time t and define

µNt =
1

N

∑
u∈At

δXu(t) (5.1)

to be the empirical measure of the system at time t.

Particle Xu(t) splits into two at an instantaneous rate λ(Xu(t), µ
N
t ), defined as

λ(x, [µ]) = Λ

(∫
R

Φ(x− y)µ(dy)

)
(5.2)

for positive, bounded, and Lipschitz Λ : R→ R and Φ a smooth, compact function.

Notice that λ is continuous in both x and µ (see Appendix A for these details). For

notational compactness, λ(x, [µNt ]) will be written λ(x) unless we need to explicitly

draw attention to the measure dependence, and we will use ? to represent convolution.
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Notice that, unlike previous chapters, the index of a particle does not indicate any-

thing about its position relative to other particles. As such, we will use the Ulam-

Harris notation in this chapter to refer to the index of particles.

5.3 Main Result

Our main result is the associated hydrodynamic limit and the description of the

limiting object in terms of a solution to a reaction-diffusion equation. We make the

following hypothesis:

Hypothesis 1: For some time T > 0

ut = ∆u+ Λ(Φ ? u)u x ∈ R, t > 0

u(x, 0) = ρ(x) x ∈ R, t = 0
(5.3)

has a unique C∞b ([0, T ]× R,R) solution.

Theorem 16. Let X be a collection of N binary BBMs with rate λ as defined in

Equation 5.2 and the initial positions of each BBM chosen i.i.d. according to a

density ρ(x). Suppose Hypothesis 1 is true. Then the empirical measure of X has a

weak limit in D([0, T ],M+(R)):

lim
N→∞

µNt (dx) = µt(dx) (5.4)

Additionally, if u(x, t) is the unique solution on [0, T ] to the equation

ut = ∆u+ Λ(Φ ? u)u x ∈ Rd, t > 0

u(x, 0) = ρ(x) x ∈ Rd, t = 0
(5.5)

Then µt(dx) = u(x, t) dx on this time interval.
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5.4 Proof of Hydrodynamic Limit

The proof of the hydrodynamic limit in Theorem 16 proceeds in a fairly standard

way. First, tightness of the sequence of probability measures is proven in the space

D([0, T ],M+). Then the limit of a convergent subsequence is identified as the weak

solution to the PDE. Last, uniqueness of the subsequence limits follows from the

uniqueness of solutions to the PDE and then applied to give an overall limit of the

empirical measures. An example of this in the simpler case of BBM is shown in

Appendix A.

5.4.1 Tightness of the measure-valued processes

Let νN be the law of µNt on the space of functions D([0, T ],M+), where M+ is

the space of positive, finite measures on R. Also define C0(R,R) as the space of

continuous functions which decay to 0 at ∞ and −∞. For a function f ∈ C0(R,R),

we define πf : D([0, T ],M+)→ D([0, T ],R) in the following way

πfµ =

∫
R

f(x)µ(dx) (5.6)

We will prove tightness in three steps. First, we will show that for f ∈ C0, {πfµNt }

satisfies the Aldous condition, defined below. Then we will show that in fact this

collection {πfµNt }N is tight in D([0, T ],R). Finally, we will apply a theorem of Roelly-

Coppoletta which says that this is enough to get tightness in the space D([0, T ],M+).

5.4.2 Aldous Condition

The Aldous condition can be stated as follows [16]. Let Yn be a real-valued process.

Definition 17. [Aldous Condition] For all ε > 0, η > 0 there exists a δ > 0 and an

integer n0 such that for any family of stopping times {τn}n with τn ≤ T

sup
n≥n0

sup
θ≤δ

P
n (|Yn(τn + θ)− Yn(τn) ≥ η) ≤ ε (5.7)
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Lemma 18. Let f ∈ C0. The processes YN = πfµ
N
t satisfy the Aldous condition.

Proof. Fix ε, η > 0 and a collection of stopping times {τn} with τn ≤ T . We first

pick an a such that P(Nτn > N(eMΛT + a)) ≤ ε
3

for each τn, with MΛ = ||Λ||∞ the

maximum of the rate function. It is clear that because each of the particles Xk is

branching with a rate bounded by MΛ, Nt �
N∑
k=1

Gk, where the Gk’s are independent

and Gk
d
= Geo(e−MΛt). Noticing that the variance of this sum is O(N), we apply

Chebyshev’s inequality:

P(Nτn ≥ N(eMλT + a)) ≤ P

(∣∣∣∣∣
N∑
k=1

Gk −NeMΛT

∣∣∣∣∣ ≥ aN

)

≤ e2MΛt(1− e−MΛt)

Na2

≤ e2MΛT

Na2

(5.8)

Therefore, we can choose an a large enough such that

e2MΛT

Na2
<
ε

3

which implies that

P(Nτn ≥ NMN) <
ε

3

where we have defined MN = eMΛT + a. Therefore, we can focus on bounding

P(|YN(t+ θ)− YN(t)| ≥ η
∣∣∣ Nt < NMN)

for any time t.
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Expanding this difference slightly, we see that

|YN(t+ θ)− YN(t)| = 1

N

∣∣∣∣∣∣
∑
u∈At

f(Xu(t+ θ))− f(Xu(t)) +
∑

u∈At+θ\At

f(Xu(t+ θ))

∣∣∣∣∣∣
≤ 1

N

∑
u∈At

|f(Xu(t+ θ))− f(Xu(t))|+
∑

u∈At+θ\At

|f(Xu(t+ θ))|

(5.9)

All of the particles in the first sum are independent in the time interval t to t + θ

because any particles born during that time interval are addressed in the second sum.

Using the same argument we used to bound Nt, we can pick a δ1 small enough and

n0 large enough that

P

(
Nt+δ1 −Nt ≥

N

Mf

η

2

∣∣∣ Nt < NMN

)
<
ε

3
(5.10)

for all N ≥ n0, with Mf = ||f ||∞. Using this bound, for N ≥ n0 and θ ≤ δ1, we see

that

1

N

∑
u∈At+θ\At

|f(Xu(t+ θ))| ≤ 1

N
(Nt+δ1 −Nt)Mf

<
1

N

N

Mf

η

2
Mf

=
η

2

(5.11)

Because f ∈ C0, for each u ∈ At there exists a ∆xu such that if |Xu(t)− y| ≤ ∆xu,

then |f(Xu(t))− f(y)| ≤ η
2MN

. Define ∆x = minu∈At ∆xu and pick δ2 small enough

such that if we define

s = P

(
sup

0≤s≤δ2
|B(s)| > ∆x

)
for B(s) a BM started at 0, then s is small enough that

sNMN <
ε

3
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This choice ensures that if E is the event that all particles alive at time t remain

within ∆x of their starting position in the time interval (t, t+ δ2), then

P

(
Ec
∣∣∣ Nt ≤ NMN

)
≤
∑
u∈At

P(Xu leaves a ∆x interval)

≤ sNMN

<
ε

3

If all Nt particles remain within ∆x of their initial position during the time interval,

then

1

N

∑
u∈At

|f(Xu(t+ θ))− f(Xu(t))| <
1

N
NMN

η

2MN

=
η

2

Choose δ = min(δ1, δ2). The inequalities above show that for θ < δ and N ≥ n0, if

Nt < NMN , Nt+θ − Nt <
N
Mf

η
2

and each of the Nt particles stay within ∆x during

the time interval (t, t+ θ), then

|YN(t+ θ)− YN(t)| < η

2
+
η

2
= η (5.12)

Therefore, the only way that |Yn(t+ θ)−Yn(t)| ≥ η is if one of these conditions fails.

But by making each of these events sufficiently unlikely, we have ensured that

P

(
{Nt ≥ NMN}

⋃{
Nt+θ −Nt ≥

Nη

2Mf

}⋃
Ec

)
<
ε

3
+
ε

3
+
ε

3

= ε

(5.13)

This shows that {YN} satisfies the Aldous condition.

Now, we will use the fact that the processes YN satisfy the Aldous condition to show

that the laws of these processes are tight in D([0, T ],R).
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Lemma 19. Let f ∈ C0. Then {πfµNt }N is tight in D([0, T ],R).

Proof. From [16], we know that tightness of the processes YN = πfµ
N
t follows from

two things: that the processes satisfy the Aldous condition and that for a dense

subset of times t, {YN(t)}N is tight in R. We already know that the processes satisfy

the Aldous condition by Lemma 18.

To satisfy the other condition required for tightness in [16], we need to show that

for a fixed t, the {YN(t)}N are tight. This must hold for a dense subset of times in

[0, T ], but in fact we will show it for every value of t. Fix a time t and an ε > 0. We

are looking for a compact set A ⊂ R such that

P(YN(t) ∈ Ac) ≤ ε

As before, we pick a large enough that

P(Nt ≥ N(eMΛt + a)) ≤ ε

Define MN = eMΛt + a and pick

A = [min(MNmf , 0),MNMf ]

where Mf = maxx f(x) and mf = minx f(x). It is clear that if Nt ≤ NMN , then

YN(t) =
1

N

∑
u∈At

f(Xu(t))

≤ 1

N
NtMf

≤ 1

N
NMNMf

= MNMf
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If f ≥ 0, then it is clear that YN(t) ≥ 0. If f(x) < 0 for some x, then we see that

YN(t) =
1

N

∑
u∈At

f(Xu(t))

≥ 1

N
Ntmf

≥ 1

N
NMNmf

= MNmf

So the P(YN(t) ∈ Ac) ≤ P(Nt ≥ NMN) ≤ ε. Therefore, at each time t, the law on R

is tight.

This guarantees that the processes {YN} are tight in D([0, T ],R).

Finally, we are ready to make a statement about the tightness of the measure-valued

processes.

Proposition 20. The measure-valued processes {µNt }N are tight in the space

D([0, T ],M+).

Proof. By Lemma 19, we know that the processes πfµ
N
t are tight in D([0, T ],R) for

any f ∈ C0. This means that for a dense collection {fk} ⊂ C0, we can say that

the collection {πfkµNt }N is tight in D([0, T ],R). We apply Theorem 2.1 in [22] to

state that this tightness implies tightness of {µNt }N in the space D([0, T ],M+) as

desired.

5.4.3 Characterization of Limit Object

By Prokhorov’s Theorem (see Appendix A for a precise statement), tightness of the

processes µNt is equivalent to being pre-compact in the weak topology; that means

that every sequence has a convergent subsequence. We want to describe these limit

objects by how they act on test functions. If the limit is the same for every convergent

subsequence, then in fact the entire sequence {µNt } converges to that limit.
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We now consider µNt applied to a test function.

Let φ ∈ C∞c ([0, T ] × R,R) be our test function, At be the set of particles alive at

time t, and Nt = |At|, the number of particles alive at time t. Also define τu to be

the birth time of particle Xu. Let us abuse notation slightly by letting {µNt }N be

some convergent subsequence, rather than the more tedious notation {µNkt }. Then

we have

N

(∫
R

φ(t, x)µNt (dx)−
∫
R

φ(0, x)µN0 (dx)

)
=
∑
u∈At

φ(t,Xu(t))−
∑
u∈A0

φ(0, Xu(0))

(5.14)

By Itô’s formula, we get that this equals

=
∑
u∈At

φ(t,Xu(t))− φ(τu, Xu(τu)) +
∑
u∈At

φ(τu, Xu(τu))−
∑
u∈A0

φ(0, Xu(0))

=
∑
u∈At

∫ t

τu

φt(s,Xu(s)) +
1

2
φxx(s,Xu(s)) ds+

∫ t

τu

φx(s,Xu(s)) dXu(s)

+
∑
u∈At

φ(τu, Xu(τu))−
∑
u∈A0

φ(0, Xu(0))

=
∑
u∈At

∫ t

0

(φt +
1

2
φxx)1{τu < s} ds+Mt +

∑
u∈At
τu>0

φ(τu, Xu(τu))

(5.15)

with Mt =
∑

u∈At

∫ t
τu
φx dXu(s) a martingale. We can rewrite the sums as integration

against singular measures in the following way

∫
R
φ(t, x)µNt (dx)−

∫
R
φ(0, x)µN0 (dx) =

∫ t
0

∫
R
(φt + 1

2
φxx) dµ

N
s ds+

∫ t
0

∫
R
φ dηN(x, s) + Mt

N

(5.16)

with dηN(x, s) a singular measure on (0, t]× R.

We want to be able to take a limit of both sides to be able to show that µt, the limit

of this subsequence, satisfies the weak formulation of the PDE in Theorem 16. That

is, we hope to show that the limiting object µt satisfies the equation

70



〈φ, µs〉|t0 =

∫ t

0

∫
R

(φt +
1

2
φxx) dµs ds+

∫ t

0

∫
R

φ(s, x)Λ

(∫
R

Φ(x− y)µs(dx)

)
µs(dx) ds

(5.17)

where 〈φ, µNs 〉 =
∫
R
φ(x, s)µNs (dx). We will deal with the limit of the terms in Equa-

tion 5.16 separately. Note that eventually we will want to show weak convergence of

5.16. However, some of the limits will be shown in L2 instead, which implies weak

convergence. The first term on the right which we address is
Mt

N
.

Lemma 21.

lim
N→∞

Mt

N
= 0 in L2 for all t.

Proof. Consider Var
(
Mt

N

)
= 1

N2E[M2
t ].

E[M2
t ] = E

[∑
u∈At

(∫ t

τu

φx(s,Xu(s)) dXu(s)

)2

+
∑
u,v∈At
u6=v

(∫ t

τv

φx(s,Xv(s)) dXv(s)

)(∫ t

τu

φx(s,Xu(s)) dXu(s)

)
= E

[∑
u∈At

(∫ t

τu

φx(s,Xu(s)) dXu(s)

)2
]

+ E

 ∑
u,v∈At
u6=v

(∫ t

τv

φx(s,Xv(s)) dXv(s)

)(∫ t

τu

φx(s,Xu(s)) dXu(s)

)
= 1 + 2

Consider term 2 first. We are summing over pairs of particles alive at time t.

Clearly particles from different lineages are independent, so those expectations can

be multiplied and contribute nothing to the sum.
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For particles Xu, Xv from the same lineage, we note that because we are only sum-

ming over a particle from its birth time until t, the only dependence between these

particles is their starting point. Because they have independent increments, their

Itô integrals are independent. Therefore, we once again multiply to get that the

expectation is 0. So 2 = 0.

Now we focus on finding 1 . Because each of the N initial lineages begin distributed

according to ρ, they are identically distributed, so we can do the following:

E[M2
t ] = E

[∑
u∈At

(∫ t

τu

φx(Xu(s)) dXu(s)

)2
]

= NE

 ∑
u∈F1(t)

(∫ t

τk

φx(Xk(s)) dXk(s)

)2


where F1(t) = {u ∈ At
∣∣ (1) < u}. We can change these integrals to have the bounds

0 to t, by a slight abuse of notation which allows Xu(s) to refer to the ancestor of

Xu(t) alive at time s < τu.

E[M2
t ] ≤ NE

 ∑
u∈F1(t)

(∫ t

τu

|φx(Xu(s))| dXu(s)

)2


≤ NE

 ∑
u∈F1(t)

(∫ t

0

|φx(Xu(s))| dXu(s)

)2


= NE
[
|F1(t)|

]
E

[(∫ t

0

|φx(B(s))| dB(s)

)2
]

where the last equality is by the many-to-one lemma. Let MΛ = ||Λ||∞ and Mφx =
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||φx||∞.

E[M2
t ] ≤ NeMΛtE

[(∫ t

0

|φx(B(s))| dB(s)

)2
]

= NeMΛtE

[∫ t

0

φ2
x(B(s)) ds

]
≤ NeMΛtM2

φxt

where we have used Itô’s isometry to get the equality in the second line. Therefore,

Var

(
Mt

N

)
≤

eMΛtM2
φx
t

N
→ 0

as N →∞.

Therefore,

lim
N→∞

Mt

N
= 0 in L2

for all t.

5.4.4 Point Process Martingale

The next term we consider is the integral against the point process ηN , from Equation

5.16. Recall that ∫ t

0

∫
R

φ dηN(x, s) =
1

N

∑
u∈At
τu>0

φ(τu, Xu(τu)) (5.18)

We will show that in the limit, this term goes to

∫ t

0

∫
R

φ(s, x)Λ

(∫
R

Φ(x− y)µs(dx)

)
µs(dx) ds

which is the final term in Equation 5.17. We do this by introducing a martingale

which will make this convergence clear.
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Lemma 22. Let φ ∈ C∞0 . Define

Mη
t =

∫ t

0

∫
R

φ dηN(x, s)−
∫ t

0

1

N

∑
u∈As

φ(s,Xu(s))λ(Xu(s)) ds (5.19)

Then Mη
t is a martingale.

Proof. To show this, we fix a value s and define the random variable

f(t) = E [Mη
t −Mη

s | Fs] (5.20)

We will show that f ′(t) = 0 for all t > 0. Since f(s) = 0, this will show that f(t) = 0

for all t ≥ s.

We will use the definition of the derivative:

f ′(t) = lim
h→0

f(t+ h)− f(t)

h

= lim
h→0

1

h
E

[∫ t+h

t

∫
R

φ dηN(x, s)−
∫ t+h

t

1

N

∑
u∈As

φ(s,Xu(s))λ(Xu(s)) ds

∣∣∣∣∣Fs
]

= lim
h→0

1

Nh
E

E
 ∑
u∈At+h\At

φ(τu, Xu(τu))−
∫ t+h

t

∑
u∈As

φ(s,Xu(s))λ(Xu(s)) ds

∣∣∣∣∣∣Ft
Fs


We will work first on simplifying

E

 ∑
u∈At+h\At

φ(τu, Xu(τu))

∣∣∣∣∣Ft
 (5.21)

It will be more convenient to talk about these birth events in order, so we let τ j be

the jth birth event after time t. To avoid having to indicate which particle it was

that branched at time τ j, we will abuse notation slightly and write Xj to reference

the particle that branched at time τ j. Then Equation 5.21 expands to
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= E[φ(τ 1, X1(τ 1))1{τ 1 < t+ h}|Ft] + E

[
∞∑
j=2

φ(τ j, Xj(τ j))1{τ j < t+ h}

∣∣∣∣∣Ft
]

= 1 + 2

(5.22)

Looking at 2 , we can see that it is of order h2:

E

[
∞∑
j=2

φ(τ j, Xj(τ j))1{τ j < t+ h}

∣∣∣∣∣Ft
]
≤ ||φ||∞E

[
∞∑
j=2

1{τ j < t+ h}

∣∣∣∣∣Ft
]

We know that the kth branch time of this process can be dominated by the kth

branch time in a BBM with rate MΛ = ||Λ||∞, so if τ̃ j is the jth branch time in a

process of Nt BBMs with rate MΛ, then we have

||φ||∞E

[
∞∑
j=2

1{τ j < t+ h}

∣∣∣∣∣Ft
]
≤ ||φ||∞E

[
∞∑
j=2

1{τ̃ j < h}

∣∣∣∣∣Ft
]

= ||φ||∞E

[
Ñh −Nt − 1{τ̃ 1 < h}

∣∣∣∣∣Ft
]

= ||φ||∞
(
Nte

MΛh −Nt − P(≥ 1 birth)
)

= ||φ||∞
(
NtMΛh+O(h2)− (NtMΛh+O(h2))

)
= ||φ||∞O(h2)

where Ñh is the number of particles alive at time h in the rate MΛ process of Nt

BBMs.

To determine 1 , we will first determine

E

[
φ(τ 1, X1(τ 1))

∣∣∣∣∣Ft,Wt+h

]
(5.23)
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where Wt+h is the σ-algebra generated by the paths {Xu(s)}u∈At for t ≤ s ≤ t + h.

This provides extra information, but does not entirely determine the expectation

because the σ-algebra does not contain any information about the branch times of

the particles. Conditioned on this information, the distribution of the first branch

time becomes more straightforward.

E

[
φ(τ 1, X1(τ 1))

∣∣∣∣∣Ft,Wt+h

]
= E

[∑
u∈At

∫ t+h

t

φ(s,Xu(s))P(process branches 1st at Xu(s)) ds

∣∣∣∣∣Ft,Wt+h

]

= E

[∑
u∈At

∫ t+h

t

φ(s,Xu(s))P(1st birth by Xu at s)P(1st birth by Xv after s for all v 6= u) ds

∣∣∣∣∣Ft,Wt+h

]

=
∑
u∈At

∫ t+h

t

φ(s,Xu(s))
(
λ(Xu(s), µ

N
s )e−

∫ s
t λ(Xu(r)) dr

)(
e−

∫ s
t λ(Xv(r)) dr

)Nt−1

ds

Notice that each of the terms e−
∫ s
t λ(Xu(r)) dr = 1+O(h) because s− t < h. Therefore,

grouping the O(h) terms inside the time integral, we get

=
∑
u∈At

∫ t+h

t

φ(s,Xu(s))λ(Xu(s), µ
N
s )(1 +O(h))(1 +O(h))Nt−1 ds

=
∑
u∈At

∫ t+h

t

φ(s,Xu(s))λ(Xu(s), µ
N
s ) +O(h) ds

=

∫ t+h

t

∑
u∈At

φ(s,Xu(s))λ(Xu(s)) ds+O(h2)

Notice that the constant in the O(h2) depends on the paths Xk. This might be

worrying once we are no longer conditioning on Wt+h. But because λ is bounded

and each Xu(t) only appears in the constants in the form λ(Xu(t)), we know that

this term is O(h2) regardless. So we have shown that 1 satisfies:
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E[φ(τ 1, X1(τ 1))1{τ 1 < t+ h}|Ft] = E

[
E

[
φ(τ 1, X1(τ 1))1{τ 1 < t+ h}

∣∣∣Ft,Wt+h

] ∣∣∣∣∣Ft
]

= E

[∫ t+h

t

∑
u∈At

φ(s,Xu(s))λ(Xu(s)) ds+O(h2)

∣∣∣∣∣Ft
]

(5.24)

Because 2 is O(h2), we can therefore say that

E

 ∑
u∈At+h\At

φ(τu, Xu(τu))

∣∣∣∣∣Ft
 = E

[∫ t+h

t

∑
u∈At

φ(s,Xu(s))λ(Xu(s)) ds

∣∣∣∣∣Ft
]

+O(h2)

(5.25)

This now looks very similar to the term which is subtracted in Equation 5.19. Upon

inspection, the only difference is that in Equation 5.19, the sum is taken over As,

rather than At. That means that when a new particle is born, the term in Mη
t

subtracts off the integral of its path. We have seen already that the contribution of

multiple births is O(h2). Therefore, all that we need to consider is the contribution

of the first birth. We now show that the integral of these contributions is O(h2) as

well.

E

[∫ t+h

t

∑
u∈As

φ(s,Xu(s))λ(Xu(s)) ds

∣∣∣∣∣Ft
]

= E

[∫ t+h

t

∑
u∈At

φ(s,Xu(s))λ(Xu(s)) ds

∣∣∣∣∣Ft
]

+
∑
u∈At

E

[∫ t+h

τ1

φ(s,X1(s))λ(X1(s)) ds

∣∣∣∣∣Ft
]

(5.26)

Taking this integral

∫ t+h

τ1

φ(s,X1(s))λ(X1(s)) ds and conditioning on the birth time
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τ 1, we show that this integral is O(h2).

E

[∫ t+h

τ1

φ(s,X1(s))λ(X1(s)) ds

∣∣∣∣∣Ft
]

≤ E

[∫ t+h

t

MΛe−MΛs

∫ t+h

s

φ(r,X1(r))λ(X1(r)) dr ds

∣∣∣∣∣Ft
] (5.27)

Bounding each term in the inner integral by its maximum value and evaluating gives

that the expectation is O(h2).

Therefore,

f(t+ h)− f(t) =
1

N
E

[∫ t+h

t

∑
u∈At

φ(s,Xu(s))λ(Xu(s)) ds

−
∫ t+h

t

∑
u∈At

φ(s,Xu(s))λ(Xu(s)) ds+O(h2)

∣∣∣∣∣Ft
]

= O(h2)

(5.28)

From this, we can see that f ′(t) = 0 almost surely for all t. Therefore Mη
t is a

martingale as desired.

In addition to showing that this is a martingale, we need to show that it is well-

behaved. We show in the next two lemmas that the second moment of this martingale

goes to 0 as N goes to infinity. We first show that it has a finite second moment,

and then use this to show that in fact the second moment goes to 0.

Lemma 23. The second moment of Mη
t is finite for all t ≤ T and all N . That is

sup
t≤T

E
[
(Mη

t )2
]
<∞ for all N (5.29)
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Proof. To show this, we expand and bound the terms in E[(NMη
t )2].

E
[
(NMη

t )2
]

= E

 ∑
u∈At\A0

φ(τu, Xu(τu))−
∫ t

0

∑
u∈As

φ(s,Xu(s))λ(Xu(s)) ds

2

= E

 ∑
u∈At\A0

φ(τu, Xu(τu))

2

− 2E

 ∑
u∈At\A0

φ(τu, Xu(τu))

∫ t

0

∑
u∈As

φ(s,Xu(s))λ(Xu(s)) ds



+ E

(∫ t

0

∑
u∈As

φ(s,Xu(s))λ(Xu(s)) ds

)2


= 1 + 2 + 3

(5.30)

We bound each term separately. For the first term,

1 ≤ E[(||φ||∞Nt)
2]

= ||φ||∞E[N2
t ]

≤ ||φ||2∞N2eMΛt(2eMΛt − 1)

(5.31)

We bound 2 in the following way.

| 2 | ≤ 2E

[
||φ||∞Nt

∫ t

0

∑
k∈As

|φ(s,Xk(s))λ(Xk(s))| ds

]

≤ 2E

[
||φ||∞Nt ·MΛ||φ||∞Ntt

]
≤ 2||φ||2∞MΛtE[N2

t ]

≤ 2||φ||2∞MΛtN
2eMΛt(2eMΛt − 1)

(5.32)
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For 3 , we have

3 ≤ E
[
(MΛt||φ||∞Nt)

2
]

≤M2
Λ||φ||2∞t2E[N2

t ]

≤M2
Λ||φ||2∞t2N2eMΛt(2eMΛt − 1)

(5.33)

It is clear that each part of the equation is bounded by CiN
2 where Ci depends on

time but not on N . Therefore, E[(Mη
t )2] ≤ C(t), a constant which does not depend

on N . So supt≤T E [(Mη
t )2] ≤ C(T ) as desired.

Lemma 24. E[(Mη
t )2]→ 0 as N →∞. Therefore,∣∣∣∣∣

∫ t

0

∫
R

φ dηN(x, s)−
∫ t

0

∑
u∈As

φ(s,Xu(s))λ(Xu(s)) ds

∣∣∣∣∣→ 0 in L2

Proof. To help with notation, call Zt =
1

N

∑
k∈At\A0

φ(τk, Xk(τk)).

From Lemmas 22 and 23, we know that Mη
t is martingale with locally finite second

moment, and therefore its quadratic variation exists locally and

(Mη
t )2 − [Mη,Mη]t (5.34)

is a local martingale. Noticing that

∫ t

0

∑
k∈As

φ(s,Xk(s))λ(Xk(s)) ds is continuous and

has finite variation, we can see that

[Mη,Mη]t = [Z,Z]t (5.35)

Because Zt is a jump process, its quadratic variation is the sum of the jump sizes.

So we have that

[Z,Z]t =
∑

u∈At\A0

1

N2
φ2(τu, Xu(τu)) (5.36)
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Noticing that 5.36 is similar to Zt with 1
N
φ2 in place of φ, we can use the same

argument as in Lemma 22 to say that

Zt =
∑

u∈At\A0

1

N2
φ2(τu, Xu(τu))−

∫ t

0

1

N

∑
u∈As

1

N
φ2(s,Xu(s)λ(Xu(s)) ds

= [Z,Z]t −
1

N2

∫ t

0

∑
u∈As

φ2(s,Xu(s))λ(Xu(s)) ds

= [M,M ]t −
1

N2

∫ t

0

∑
u∈As

φ2(s,Xu(s))λ(Xu(s)) ds

(5.37)

is a martingale. In particular, this means that

E
[
(Mη

t )2
]

= E[M,M ]t

= E

[
1

N2

∫ t

0

∑
u∈As

φ2(s,Xu(s))λ(Xu(s)) ds

]

≤ 1

N2
E

[∫ t

0

NtM
2
φMΛ ds

]

≤
eMΛtM2

φMΛt

N

(5.38)

where we have once again defined MΛ = ||Λ||∞,Mφ = ||φ||∞. Therefore, we have our

desired result that for any fixed t,

E
[
(Mη

t )2
]
→ 0 in L2 as N →∞

And as such,

∣∣∣∣∫ t

0

∫
R

φ(s, x) dηN(s, x)−
∫ t

0

∫
R

φ(s, x)λ(x) dµNs ds

∣∣∣∣→ 0 in L2
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5.4.5 A Limit of the Weak Solution Equation

We have now shown that {µNt } is tight, that every µNt must satisfy Equation 5.16,

and have proven almost all the lemmas necessary to take a limit of Equation 5.16.

Now we will show that every convergent subsequence converges to the same limit,

one satisfying Equation 5.17; this would imply that the entire sequence converges

to that limit. Therefore, existence and uniqueness of the limit will be reduced to a

question of uniqueness of weak solutions to the limiting PDE.

We want to show convergence of integrals of the form
∫
R
g(x, s) dνn(s, x) and∫ t

0

∫
R
g(x, s) dνn(s, x) ds for g(x, s) a test function in C∞0 . To do this, we need to verify

that all the integrals are continuous functions of the measure-valued processes.

As indicated in [7, Chapter 3], weak convergence of the probability measure νn on

the space D([0, T ],M+) does not necessarily imply weak convergence of νtn, the

projection of the measures at time t for some t ∈ [0, T ]. In particular, for weak

convergence of the finite-dimensional distributions, we require an additional condition

of continuity, P -a.s., at the selected times. To this end, define πt : D([0, T ],M+)→

M+ as the projection of the cadlag process at time t: πt(ν) = ν(t) and let TP be the

set of t ∈ [0, T ] such that πt is continuous except at a set of P -measure 0. It is known

that {0, T} ⊂ TP always. If 0 < t < T , then πt is continuous at ν ∈ D([0, T ],M+)

if and only if ν is continuous at t a.s. Therefore, t ∈ TP if and only if P (Jt) = 0,

that is, if the probability that the process jumps at t is 0. Because there are no

distinguished times in this process and the probability of a jump at any fixed time

is 0 for each N , Lemma 25 follows:

Lemma 25. TP = [0, T ] for the weakly-dependent BBM process. Therefore, if µNt ⇒

µt as a sequence of measure-valued processes, then µNs ⇒ µs as a sequence of measures

for all s ∈ [0, T ].

Proof. The fact that TP = [0, T ] follows from the fact that the νn probability of a
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jump at time t is 0 for all t ∈ [0, T ], and because there can be at most countably

many of these jumps, no jumps can develop in the limit. The statement about the

weak convergence of νtn therefore follows from [7, Chapter 3.13].

Lemma 26. Let f : D([0, T ],M+)→ D([0, T ],R), with

f(S)(t) =
∫
R
g(x, t)S(t, dx). If g(·, s) ∈ C∞c (R) for any s, then f is a continuous

function.

Proof. Let dM be the Skorohod distance on D([0, T ],M+) and dR be the Skorohod

distance on D([0, T ],R). Fix ε > 0, Y ∈ D([0, T ],M+). Notice that because g is

smooth and compactly supported, it is Lipschitz and uniformly continuous. There-

fore, we can define |g|L to be the Lipschitz constant for g and δ1 to be a constant

such that if |t− s| < δ1, then |g(t, x)− g(s, x)| < ε
2 supt≤T

∫
R
Y (t,dx)

.

Let δ = min
(

ε
2|g|L

, δ1, ε
)

. For any X such that dM(S, Y ) ≤ δ, we have the following.

By the definition of dM , there exists an continuous, increasing, bijective function

λ : [0, T ]→ [0, T ] such that

sup
t≤T
|t− λt| ≤ δ

sup
t≤T
||S(t)− Y (λt)||Wass ≤ δ

(5.39)

Using that same λ, we see that

|f(S)(t)− f(Y )(λt)| =
∣∣∣∣∫
R

g(t, x)S(t, dx)−
∫
R

g(λt, x)Y (λt, dx)

∣∣∣∣
≤
∣∣∣∣∫
R

g(t, x)S(t, dx)−
∫
R

g(t, x)Y (λt, dx)

∣∣∣∣+∣∣∣∣∫
R

g(t, x)Y (λt, dx)−
∫
R

g(λt, x)Y (λt, dx)

∣∣∣∣
(5.40)

Because g(t,x)
|g|L

is a Lipschitz function with Lipschitz constant 1, we know that by the
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definition of the Wasserstein distance, we have∣∣∣∣∫
R

g(t, x)

|g|L
(S(t, dx)− Y (λt, dx))

∣∣∣∣ ≤ dM(S(t), Y (λt)) ≤ δ (5.41)

Therefore, (5.40) simplifies to

|f(S)(t)− f(Y )(λt)| ≤ |g|Lδ +

∣∣∣∣∫
R

(g(t, x)− g(λt, x))Y (λt, dx)

∣∣∣∣ (5.42)

Because |t − λt| ≤ δ ≤ δ1, we know that |g(t, x) − g(λt, x)| ≤ ε
2 supt≤T

∫
R
Y (t,dx)

.

Therefore, we get that the last term in (5.42) can be bounded by

|f(S)(t)− f(Y )(λt)| ≤ |g|Lδ +
ε

2 supt≤T
∫
R
Y (t, dx)

∫
R

Y (λt, dx)

≤ ε

2
+
ε

2
= ε

(5.43)

Notice that this bound is independent of t. Therefore,

sup
t≤T
|f(S)(t)− f(Y )(λt)| ≤ ε (5.44)

Because we used the same λ, we know that

sup
t≤T
|t− λt| ≤ δ ≤ ε (5.45)

So by the definition of dR, we can see that dR(f(S), f(Y )) ≤ ε. Therefore f is

continuous at Y for each Y ∈ D([0, T ],M+).

Lemma 27. Let a be an element in D([0, T ],R). Then h(a)(t) =
∫ t

0
a(s) ds is a

continuous function of a for all t. And therefore, h(a) is a continuous map h :

D([0, T ],R)→ C([0, T ],R).

Proof. Fix an ε > 0. Fix a point a ∈ D([0, T ],R). We want to show that there

exists a δ such that if b ∈ D([0, T ],R) is chosen such that dR(a, b) < δ, then∣∣∣∫ t0 a(s) ds−
∫ t

0
b(s) ds

∣∣∣ < ε. Before choosing a δ, we define the following:
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Let aδ(s) = sup|s−s′|≤δ a(s′) and aδ(s) = inf |s−s′|≤δ a(s′). Notice that aδ(s), aδ(s) con-

verge to a(s) as δ → 0 wherever a is a continuous (and therefore almost everywhere).

Also notice that aδ(s) ≤ a(s) ≤ aδ(s), and that the convergence of aδ(s), aδ(s) is

monotonic. Therefore, by the monotonic convergence theorem, we know that∫ t

0

aδ(s) ds→
∫ t

0

a(s) ds

∫ t

0

aδ(s) ds→
∫ t

0

a(s) ds

for all t. Therefore, we can choose a δ1 such that
∣∣∣∫ t0 aδ1(s) ds−

∫ t
0
aδ1(s) ds

∣∣∣ ≤ ε
2
.

Pick δ = min(δ1,
ε

2T
) and let b ∈ D([0, T ],R) such that dR(a, b) ≤ δ. Then there

exists a λ such that |a(λ(s))− b(s)| ≤ ε
2T

. Then we have the following:

∣∣∣∣∫ t

0

a(s)− b(s) ds
∣∣∣∣ =

∣∣∣∣∫ t

0

a(s)− a(λ(s)) + a(λ(s))− b(s) ds
∣∣∣∣

≤
∣∣∣∣∫ t

0

a(s) ds−
∫ t

0

a(λ(s)) ds

∣∣∣∣+

∫ t

0

|a(λ(s))− b(s)| ds

≤
∣∣∣∣∫ t

0

a(s) ds−
∫ t

0

a(λ(s)) ds

∣∣∣∣+
ε

2

≤
∣∣∣∣∫ t

0

aδ1(s) ds−
∫ t

0

aδ1(s) ds

∣∣∣∣+
ε

2

where the last inequality comes from the fact that |λ(s) − s| ≤ δ ≤ δ1, so we know

that aδ1(s) ≤ a(λ(s)) ≤ aδ1(s). Therefore,∣∣∣∣∫ t

0

a(s)− b(s) ds
∣∣∣∣ ≤ ε

2
+
ε

2
= ε

Therefore, we have that h(a)(t) is continuous for each t.

All that remains to show that h(a) is a continuous function from D([0, T ],R) →

C([0, T ],R). Suppose {ak} is a convergent sequence in D([0, T ],R). Then we have
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shown that {
∫ t

0
ak(s) ds} is a convergent sequence for every t and if ak → a, then∫ t

0
ak(s) ds →

∫ t
0
a(s) ds. But {

∫ t
0
ak(s) ds} is a sequence of continuous functions on

a compact set which converge pointwise to a continuous function. Therefore, the

convergence is uniform.

We use the continuity of f to show convergence of the desired integrals.

Lemma 28. If Pn, P are probability measures on D([0, T ],M+) such that Pn ⇒ P ,

Pn(t)⇒ P (t) for all t, and Sn, S are the random variables of D([0, T ],M+) with law

Pn, P respectively, then
∫
R
g(x, t)Sn(t, dx)⇒

∫
R
φ(t, x)S(t, dx) and∫ t

0

∫
R
g(x, s)Sn(s, dx) ds⇒

∫ t
0

∫
R
g(s, x)S(s, dx) ds weakly.

Proof. Because f is continuous and Sn(t) converges in distribution to S(t) for all t,

then f(Sn(t)) ⇒ f(S(t)) weakly by the continuous mapping theorem. To see the

convergence for the time integrals, we note that
∫ t

0

∫
R
g(x, s)S(s, dx) ds is a com-

position of continuous functions and is therefore also continuous. So again by the

continuous mapping theorem, we have that if Sn ⇒ S weakly, then∫ t
0

∫
R
g(x, s)Sn(s, dx) ds⇒

∫ t
0

∫
R
g(x, s)S(s, dx) ds weakly.

We have essentially proven our desired hydrodynamic limit. All that remains is to

put the last pieces together.

Proof of Theorem 16. Using Lemmas 21, 24, and 28, we take the limit of Equation

5.16 along any convergent subsequence {µkt } and get convergence in distribution.

lim
k→∞
〈φ, µks〉|t0 = lim

k→∞

∫ t

0

∫
R

(
φt +

1

2
φxx

)
dµks ds+

∫ t

0

∫
R

φ dηN(x, s) +
Mt

k

lim
k→∞
〈φ, µks〉|t0 = lim

k→∞

∫ t

0

∫
R

(
φt +

1

2
φxx

)
dµks ds+

∫ t

0

∫
R

φλ(x) dµks ds+
Mt

k

〈φ, µs〉|t0 =

∫ t

0

∫
R

(
φt +

1

2
φxx + φλ(x)

)
dµs ds

(5.46)
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Recall the definition of λ(x) is such that this compact notation actually represents

∫ t

0

∫
R

φλ dµs ds =

∫ t

0

∫
R

φ(s, x)Λ

(∫
R

Φ(x− y)µs(dx)

)
µs(dx) ds

This expanded representation makes it clear that the limit along any convergent

subsequence, µt(dx), is the weak solution to the PDE (5.5). Under the hypothesis

that there is a unique solution, we can conclude that the whole sequence {µNt }

converges and has a limit µt. Because the solution to the equation is smooth, we can

say that µt(dx) = u(x, t) dx, with u(x, t) solving Equation 5.5 as desired.
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6

Conclusion

In this dissertation, we have analyzed the asymptotic behavior of three branching

interacting particle systems. We summarize the results and some open questions

associated with each process.

First, we studied the N-BBM process with selection according to the fitness function

x + Ψ(x), where Ψ is periodic. We proved the existence of a long-time limiting

speed of the system and the existence of a stationary distribution in a moving frame.

Further work is ongoing to study the positivity and value of the speed. Additionally,

the speed was proven in the case where the initial distribution of particles was chosen

according to the invariant distribution; it remains open to show that if the process

began in a different distribution that the speed would still exist. This would require

further study of convergence of the process to the invariant measure in the moving

frame.

In the next chapter, we looked at the N-BBM process with a symmetrically decaying

fitness function which had a single local maximum at the origin. Study of this process

was inspired by the behavior of the first process while stuck in a local fitness peak.

We showed a hydrodynamic limit of the process, where convergence was obtained
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in the Kolmogorov distance almost surely and in L1. This limiting measure was

shown to satisfy a free boundary PDE. Several further directions of inquiry are

open. For instance, the particles are required to begin in a symmetric configuration.

This is necessitated by a technical constraint, but is not likely to be necessary for a

similar result to hold. A second open line of inquiry would be to consider a fitness

function which decayed monotonically away from the origin but which was not not

symmetric. This condition was necessary here as a part of the proof technique which

treated particles on either side of the origin were indistinguishable. It is an open

question to show that the result holds under these more general conditions.

Finally, we studied a branching process in which the branch rate of a particle was a

function of the empirical measure of the process. We showed convergence weakly to a

limit which satisfies a non-local PDE, when a unique solution exists. Further inquiry

can be done into precisely the conditions which ensure that such a solution exists.

Additionally, the rate was required to be bounded and positive; further study to

loosen these conditions would allow for interesting cases to be considered, including

the motivating process where the branch rate is a function of a particle’s distance

from the empirical mean. However, as indicated, there are many difficulties in making

this generalization. In particular, controlling particle growth and ensuring there is

no finite time explosion becomes a difficult problem that needs additional study.
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Appendix A

Assorted Facts and Proofs

A.1 Hydrodynamic Limit of a BBM

The purpose of this section is to prove the following hydrodynamic limit.

Theorem 29. Let XN(t) be a particle system beginning with N binary, rate 1

branching Brownian motions in R where the initial positions of each particle cho-

sen independently and distributed according to the probability density ρ(x). Let

µNt (x) =
1

N

Nt∑
k=1

δXk(t), where Nt is the number of particles alive at time t. Then

limN→∞ µ
N
t (dx) = u(x, t) dx weakly, where u(x, t) is the solution to the PDE

ut =
1

2
uxx + u x ∈ R, t > 0

u(x, 0) = ρ(x)

(A.1)

The proof techniques used here are versatile and form the basic structure of many

proofs of this type. The theorems below are not original; they can be found in [22],

[16], [7] for instance. We begin by recalling several theorems which will be used and

then prove the theorem in small pieces.
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We call a collection of probability measures Π tight if for each ε > 0, there exists a

compact set K such that P (Kc) ≤ ε for each P ∈ Π.

We call a collection of probability measures Π relatively compact if each sequence

{Pn} of measures in Π has a further subsequence {Pni} which converges weakly.

Theorem 30 ([7] Prokhorov’s Theorem). Let S be a complete and separable space.

Then for any collection of probability measures Π, Π is tight if and only if it is

relatively compact.

We also have a theorem which says that if a sequence of probability measures is tight

and each subsequence which converges has the same limit, then we know that the

entire sequence converges to that limit.

Theorem 31. If {Pn} is tight and each subsequence which converges weakly at all

converges weakly to the measure P , then Pn ⇒ P .

These theorems together outline a clear path for determining weak convergence of

a sequence of probability measures. First, one must show that the sequence of

empirical measures is tight (in the appropriate space). By Prokhorov’s Theorem,

this will then guarantee that the sequence is relatively compact. Then, one looks

to find a characterization of the limit object of a subsequence which will prove that

each such limit object must agree. This is often done by relating the limit objects to

PDE solutions or to a particular martingale. This way, uniqueness can be obtained

through other analysis methods and combined with Theorem 31 to give the desired

weak convergence.

When we are dealing with convergence in these cases, we choose to view our objects

as measure-valued processes; that is, our process is an object in D([0, T ],M+), where

M+ is the space of positive, finite measures. Luckily, this is a complete, separable

metric space.
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We endeavor to prove tightness in this space. A sufficient condition for tightness

in D([0, T ],M+) was given by Roelly-Coppoletta in [22]. It relates tightness in the

Skorohod space of measure-valued processes to tightness in the Skorohod space of

real-valued processes.

Theorem 32. Let {Pn}n be a sequence of probability measures on D([0, T ],M+)

and let {fk}k be a dense sequence of functions in C0(R,R). Define πfkPn to be the

pushforward measure through fk

πfkPn =

∫
R

fk Pn (A.2)

If, for each k in N, {πfkPn}n is a tight sequence of probabilities on the space

D([0, T ],R), then {Pn}n is tight on D([0, T ],M+).

From there, we can refer to the many theorems that give sufficient conditions for

tightness in the Skorohod space. One such theorem which will be useful for our

purposes is the characterization via Aldous (see for instance [16] for the version

below or [1] for the original presentation).

Theorem 33 (Aldous Condition). For each ε, η,m, there exists a δ0 and n0 such

that if δ ≤ δ0 and n ≥ n0 and if τ is a discrete Xn-stopping time satisfying τ ≤ m,

then

P (|Xn
τ+δ −Xn

τ | ≥ η) ≤ ε (A.3)

Theorem 34. If the Aldous condition holds and for each t, the laws of {∆Xn
t }n,

where ∆Xn
t = Xn

t − lim
s→t−

Xn
s , form a tight sequence, then the distributions of the

sequence {Xn}n are tight on D([0, T ],R).

So let us take a function f ∈ C0 and define Mf = ||f ||∞. Then we consider the

sequence of probability measures {πfµnt }n. The measure πfµ
n
t is the law of the

process Y n
t = 1

n

∑Nt
k=1 f(Xk(t)).
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Lemma 35. The Yt processes satisfy the Aldous condition.

Proof. We let At be the collection of particles alive at time t and Nt = |At| be the

number of particles alive at time t. Fix an ε, η,m and τ a Y n-stopping time with

τ ≤ m. We look to bound

P (|Y n
τ+δ − Y n

τ | ≥ η) = P

∣∣∣∣∣∣ 1n
∑

u∈Aτ+δ

f(Xu(τ + δ))− 1

n

∑
u∈Aτ

f(Xu(τ))

∣∣∣∣∣∣ ≥ η



≤ P

 1

n

∑
u∈Aτ

|f(Xu(τ + δ))− f(Xu(τ))|+ 1

n

∑
u∈Aτ+δ\Aτ

|f(Xu(τ + δ)| ≥ η


(A.4)

What this says is that we need to control the amount that the particles move in the

interval [τ, τ + δ] and we need to control the number of new particles which are born

in that interval.

For ease of reference, let E be the event that |Y n
τ+δ − Y n

τ | ≥ η. We first explain how

to choose δ, n0.

We know that the number of particles alive at time τ is a random variable whose

distribution is the same as the distribution of the sum of n independent Geo(e−τ )

random variables. Therefore, Var(Nτ ) = ne2τ (1− e−τ ) and we can fix an a such that

P(|Nτ − neτ | ≥ na) ≤ Var(Nτ)

a2n2

=
e2τ (1− e−τ )

a2n

≤ ε

3

(A.5)

where the first inequality is Chebyshev’s inequality. Define MN = neτ + na.

Let A be the event Nτ < MN . We have selected a to ensure that P (Ac) ≤ ε
3
.

Because f ∈ C0, for each u ∈ Aτ , there exists a ∆xu such that if d(Xu(τ), y) ≤ ∆xu,

then d(f(Xu(τ)), f(y)) ≤ η
2MN

. Let ∆x = minu∈Aτ ∆xu. Pick δ1 small enough such
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that nP(|B(δ)−B(0)| ≥ ∆x) ≤ ε
3
. Let B be the event that the Nτ Brownian particles

which are alive at time τ all move less than ∆x.

Choose δ2 small enough so that each particle alive at time τ has at most one offspring

during the interval [τ, τ + δ2]. Precisely, choose δ2 small enough so that P(|F τ
u (τ +

δ2)| > 2 for some u ∈ Aτ ) ≤ ε
3
, where F τ

u (τ + δ2) = {v ∈ Aτ+δ2

∣∣∣ u < v}. Let C be

the event that all particles alive at time τ have at most one offspring by time τ + δ2.

Let δ = min(δ1, δ2). Finally, pick n0 >
2MnMf

η
.

P(E) = P(E|A)P(A) + P(E|Ac)P(Ac)

≤ P(E|A) + P(Ac)

P(E|A) = P(E|A ∩B)P(B|A) + P(E|A ∩Bc)P(Bc|A)

≤ P(E|A ∩B) + P(Bc|A)

P(E|A ∩B) = P(E|A ∩B ∩ C)P(C|A ∩B) + P(E|A ∩B ∩ Cc)P(Cc|A ∩B)

≤ P(E|A ∩B ∩ C) + P(Cc|A ∩B)

(A.6)

Therefore, we have that

P(E) ≤ P(E|A ∩B ∩ C) + P(Ac) + P(Bc|A) + P(Cc|A ∩B)

≤ P(E|A ∩B ∩ C) +
ε

3
+
ε

3
+
ε

3

(A.7)

All that remains is to show that P(E|A ∩B ∩ C) = 0. Consider the relevant sum:

1

n

∑
u∈Aτ

|f(Xu(τ + δ))− f(Xu(τ))|+ 1

n

∑
u∈Aτ+δ\Aτ

|f(Xu(τ + δ))| (A.8)

Given A,B,C means we know that Nτ < neτ + na, each particle alive at time τ

moves less than ∆x, where ∆x is chosen so that the change in f can be at most η
2MN

,

and each particle has at most one offspring in [τ, τ + δ]. So for n ≥ n0 >
2MNMf

η
, we

have that
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1

n

∑
u∈Aτ

|f(Xu(τ + δ))− f(Xu(τ))|+ 1

n

∑
u∈Aτ+δ\Aτ

|f(Xu(τ + δ)|

≤ 1

n
MN

η

2MN

+
1

n
MNMf

≤ η

2
+
MnMf

n0

≤ η

2
+
η

2

= η

(A.9)

Therefore, P(E|A ∩B ∩ C) = 0. Plugging this back in to A.7, we get that

P(|Y n(τ + δ)− Y n(τ)| ≥ η) ≤ ε (A.10)

for n ≥ n0 as desired. Therefore, the collection of processes {Y n} satisfies the Aldous

condition.

Lemma 36. {Y n} are tight in D([0, T ],R).

Proof. As we have shown that the processes satisfy the Aldous condition, all that

remains to apply Theorem 34 is to show that the laws of the jump process at any

time t is tight. But notice that ∆Y n
t ≤ Mf for all times t, because a jump in Y n

represents the addition of a new particle. As only one particle is added at a time with

probability 1, and the jump is of size f(Xk(t)), where Xk is the branching particle,

we know that the jump distribution is in fact bounded. Therefore, it is tight and we

can apply Theorem 34 to say that the sequence of processes {Y n} are tight.

This lemma, combined with Theorem 32, show that the laws of the processes {Xn}

are tight on D([0, T ],M+).

Finally, we now show that any limit of the process must be a weak solution of the

PDE A.1. Let φ(x) ∈ C∞c (R,R) be a test function. Then consider a subsequence
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{µs(j)t (dx)}. Because the sequence {µNt (dx)} is tight, we know that this subsequence

has a limit, call it µt(dx).

∫
R

φ(x)µ
Nj
t (dx) =

1

Nj

Nj∑
k=1

Nk(t)∑
i=1

φ(Xk
i (t))

Taking the limit of both sides, we see that

lim
j→∞

∫
R

φ(x)µ
Nj
t (dx) = lim

j→∞

1

Nj

Nj∑
k=1

Nk(t)∑
i=1

φ(Xk
i (t))

∫
R

φ(x)µt(dx) = E

N1
j (t)∑
i=1

φ(X1
i (t))



by the law of large numbers. Applying the many-to-one lemma, we see that

E

N1
j (t)∑
i=1

φ(X1
i (t))

 = etEρ[φ(B(t))]

= et
∫
R

∫
R

φ(y)ρ(x)Φ(x− y, t) dx dy

where Φ(x, t) = 1√
2πt

e−x
2/2t is the heat kernel.

Therefore, using the fact that ρ ? Φ solves the heat equation and the fact that if

w(x, t) is a solution to the heat equation, then etw(x, t) solves the heat equation

with growth, we can see that this limit is a weak solution to the equation

ut =
1

2
uxx + u x ∈ R, t > 0

u(x, 0) = ρ(x)

(A.11)
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Therefore, we know that the limit of the subsequence must be a weak solution to the

heat equation. Because of the smoothing property of the heat equation, we can in

fact say that the resulting limit has a density which is a strong solution to the heat

equation. Because the solution to the heat equation is unique under sufficient growth

conditions, we can apply Theorem 31 to say that the measures converge weakly to

u(x, t) dx where u(x, t) solves the heat equation, as desired.

A.2 Distribution of the Size of a BBM

Theorem 37. Let Nt be the size of a rate λ binary branching Brownian motion at

time t. Then

Nt
d
= Geo(e−λt)

That is, P(Nt = k) = (1− e−λt)k−1(e−λt).

Proof. We know that the characteristic function of a geometric random variable with

parameter p is

f(p, θ) = E[eiθX ] =
peiθ

1− (1− p)eiθ
(A.12)

We first find an equality satisfied by E[eiθNt ] by conditioning on the first branch time

τ .

E[eiθNt ] = E[eiθNt |τ > t]P(τ > t) + E[eiθNt|τ ≤ t]P(τ ≤ t)

= eiθe−λt +

∫ t

0

E[eiθNt|τ = s]P(τ = s) ds

= eiθe−λt +

∫ t

0

E[eiθ(N
1
t−s+N

2
t−s)]λe−λs ds

where in the last line we have split Nt into N1
t−s +N2

t−s, the sum of the offspring of

particle 1 and the offspring of particle 2 in the time remaining from s to t. Now make

a u-substitution and use the fact that N1
t−s, N

2
t−s are independent and identically
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distributed to Nt−s to see that,

E[eiθNt ] = eiθe−λt +

∫ t

0

E[eiθNu ]2λe−λteλu du

Rather than solve this integral equation, we are going to plug in our guess, f(e−λt, θ),

for E[eiθNt ] and verify that the equality holds. That is, we want to show that

f(e−λt, θ) = eiθe−λt + e−λt
∫ t

0

f(e−λu, θ)2λeλu du (A.13)

The right hand side becomes

eiθe−λt + e−λt
∫ t

0

f(e−λu, θ)2λeλu du = eiθe−λt + e−λt
∫ t

0

e−2λue2iθ

(1− (1− e−λu)eiθ)2
λeλu du

= eiθe−λt + e−λte2iθ

∫ t

0

λe−λu

(1− (1− e−λu)eiθ)2
du

Let y = 1− (1− e−λu)eiθ and the integral becomes

= eiθe−λt + e−λte2iθ

∫ 1−(1−e−λt)eiθ

1

−e−iθ

y2
dy

= eiθe−λt + e−λteiθ
(

1

1− (1− e−λt)eiθ
− 1

)

=
eiθe−λt

1− (1− e−λt)eiθ

= f(e−λt, θ)

as desired. Therefore,

E[eiθNt ] = f(e−λt, θ) (A.14)

so Nt is geometric with parameter e−λt.

A.3 A Brownian Motion Tail Bound

When bounding the motion of the particles in a branching Brownian motion, the

many-to-one lemma often leaves us with an expression involving a single Brownian
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motion. We use the following tail bound to look at the probability that a Brownian

motion travels far in a fixed amount of time.

Theorem 38. Let B(t) be a Brownian motion with B(0) = 0. Then

P(|B(h)| ≥ δ) ≤
√

2h

δ
√
π

(A.15)

Proof. This proof relies on a simple change to the integral that represents this prob-

ability. We multiply by x/δ, which is greater than 1 because the integral we are

taking starts at δ.

P(|B(h)| ≥ δ) = 2

∫ ∞
δ

1√
2πh

e−x
2/2h dx

≤ 2√
2πh

∫ ∞
δ

x

δ
e−x

2/2h dx

=
2
√
h

δ
√

2π

(
−e−x2/2h

) ∣∣∣∞
δ

=
2
√
h

δ
√

2π
e−δ

2/2h

Sometimes this is the upper bound we choose to use. Other times, we go a step

farther and say that

P(|B(h)| ≥ δ) ≤
√

2h

δ
√
π

A.4 Relevant Harris Chain Results

In Chapter 3, we prove that a Markov chain Z(t) is in fact a positive recurrent Harris

chain. We refer to several theorems in Meyn and Tweedie [17], which we state below

for convenience of reference, using the notation of [17].
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Theorem 39 ([17] Theorem 1.2(a)). If Z(t) is Harris recurrent with invariant mea-

sure π then Z(t) is positive Harris recurrent if and only if there exists a closed petite

set C such that for some (and then any) δ > 0,

sup
x∈C

Ex[τC(δ)] <∞

where τC(δ) is the first hitting time of C after δ.

Theorem 40 ([17] Theorem 3.1). Suppose that a is a general probability distribution

on R
+ and let {T (k)} be an undelayed renewal process with increment distribution a.

Then the Ka-chain of Z(t) is the discrete time chain Zk = Z(T (k)). If Zk is Harris

recurrent, then so is the process Z(t). And then the chain Zk is positive Harris

recurrent if and only if the process Z(t) is positive Harris recurrent.

When this result in used in this thesis, we choose a to be the distribution which is a

constant T = O(ln(N)) with probability 1. This is a natural choice, as the process

can be easily thought about in chunks of order ln(N), the amount of time it takes a

Brownian motion to grow to size N .

Theorem 41 ([17] Theorem 3.3). If C is petite and Px(τC <∞) = 1 for all x ∈ X,

then Z(t) is Harris recurrent.

A.5 Continuity Statements Relating to Chapter 5

Lemma 42. If Φ(x) is Lipschitz and Λ(x) is uniformly continuous, then λ(x, ·) is

uniformly continuous. That is, for all ε > 0, there exists a δ > 0 such that if

Wass1(µ, ν) < δ, then |λ(x, µ)− λ(x, ν)| < ε.

Proof. Fix an ε > 0 and let K be the Lipschitz constant of Φ. Choose δ such that

if |x − y| < Kδ, then |Λ(x) − Λ(y)| < ε , which we can do uniformly for all x. Let
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Wass1(µ, ν) < δ. Then note the following:

|λ(x, µ)− λ(x, ν)| =
∣∣∣Λ(∫

R

Φ(x− y)µ(dy)

)
− Λ

(∫
R

Φ(x− y)ν(dy)

) ∣∣∣

Notice that∣∣∣∣∫
R

Φ(x− y)µ(dy)−
∫
R

Φ(x− y)ν(dy)

∣∣∣∣ = K

∣∣∣∣∫
R

Φ(x− y)

K
µ(dy)−

∫
R

Φ(x− y)

K
ν(dy)

∣∣∣∣
≤ Kδ

(A.16)

because Φ(x−y)
K

= fx(y) is a 1-Lipschitz function and therefore∣∣∫
R
fx(y)µ(dy)−

∫
R
fx(y)ν(dy)

∣∣ < δ by the definition of the Wasserstein distance.

Because the arguments are within Kδ of each other, we know that∣∣∣Λ(∫
R

Φ(x− y)µ(dy)

)
− Λ

(∫
R

Φ(x− y)ν(dy)

) ∣∣∣ < ε

Therefore, |λ(x, µ)− λ(x, ν)| < ε as desired.

Lemma 43. If Φ(x) is Lipschitz and Λ(x) is uniformly continuous, then λ(·, µ) is

uniformly continuous. That is, for all ε > 0, there exists a δ > 0 such that if

|x− y| < δ, then |λ(x, µ)− λ(y, µ)| < ε.

Proof. Fix an ε > 0 and again let K be the Lipschitz constant of Φ. Because

Λ is uniformly continuous, we can pick a δ such that if |u − v| < Kµ(R)δ, then
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|Λ(u)− Λ(v)| < ε. Suppose |x− y| < δ. Then∣∣∣∣∫
R

Φ(x− z)µ(dz)−
∫
R

Φ(y − z)µ(dz)

∣∣∣∣ =

∣∣∣∣∫
R

(Φ(x− z)− Φ(y − z))µ(dz)

∣∣∣∣
≤
∫
R

|Φ(x− z)− Φ(y − z)|µ(dz)

≤
∫
R

K|x− y|µ(dz)

= K|x− y|µ(R)

≤ Kµ(R)δ

Therefore, if |x− y| < δ, then

|λ(x, µ)− λ(y, µ)| =
∣∣∣∣Λ(∫

R

Φ(x− z)µ(dz)

)
− Λ

(∫
R

Φ(y − z)µ(dz)

)∣∣∣∣
≤ ε

by the choice of δ. Therefore, we have the desired inequality.

The next lemma tells us that we can bound the change in λ over a fixed time interval

by a constant times the change in particle positions plus a constant times the length

of the interval. The second term in the bound is necessary because each new particle

birth adds mass to the system and therefore causes a jump in the rate of the process.

The previous lemmas tell us that λ is continuous; roughly this says that between

birth rates, if none of the particles move too far, then the branch rate of each particle

doesn’t change very much.

Lemma 44. Suppose that Λ,Φ are bounded Lipschitz functions with Lipschitz con-

stants KΛ, KΦ respectively and ||Φ||∞ = MΦ. Fix a time interval [t, t+ h]. Let Nt be

the number of particles at time t and N∆h = Nt+h − Nt. For this lemma, we write

Xu(t) = Xu(t)1τu≤t + Xv(t)1τu>t, where v < u. If sup
u∈At+h

sup
t≤s≤t+h

|Xu(s)−Xu(t)| < δ
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and N∆h ≤ Ch, then there exists constants C1, C2 > 0, functions of N,Nt, such that

sup
t≤s≤t+h

|λ(x, µNs )− λ(x, µNt )| ≤ C1δ + C2h.

Proof. Using the definition of λ, we can see that∣∣∣∣Λ(∫
R

Φ(x− y)µNs (dy)

)
− Λ

(∫
R

Φ(x− y)µNt (dy)

)∣∣∣∣
≤ KΛ

∣∣∣∣∫
R

Φ(x− y)µNs (dy)−
∫
R

Φ(x− y)µNt (dy)

∣∣∣∣
=
KΛ

N

∣∣∣∣∣∑
u∈As

Φ(x−Xu(s))−
∑
u∈At

Φ(x−Xu(t))

∣∣∣∣∣
≤ KΛ

N

∑
u∈At

|Φ(x−Xu(s))− Φ(x−Xu(t))|+
∑

u∈As\At

|Φ(x−Xu(s))|


≤ KΛ

N
(NtKΦδ + ChMΦ)

=
KΛKΦNt

N
δ +

KΛMΦC

N
h

(A.17)

Lemma 45. Suppose the conditions of the above lemma are satisfied. Then there

exists constants D1, D2 > 0, functions of N,Nt, such that for each particle k alive at

time t, sup
t≤s≤t+h

|λ(Xu(s), µ
N
s )− λ(Xu(t), µ

N
t )| ≤ D1δ +D2h.

Proof. We can split up the change in λ to account for the change resulting from a

shift in the x value and the change resulting from a shift in the measure.

|λ(Xu(s), µ
N
s )− λ(Xu(t), µ

N
t )|

< |λ(Xu(s), µ
N
s )− λ(Xu(s), µ

N
t )|+ |λ(Xu(s), µ

N
t )− λ(Xu(t), µ

N
t )|

< C1δ + C2h+ |λ(Xu(s), µ
N
t )− λ(Xu(t), µ

N
t )|

(A.18)

But we have seen already that λ(·, µ) is continuous, so it will not be hard to bound

this by something proportional to δ.
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|λ(Xu(s), µ
N
t )− λ(Xu(t), µ

N
t )|∣∣∣∣Λ(∫

R

Φ(Xu(s)− z)µNt (dz)

)
− Λ

(∫
R

Φ(Xu(t)− z)µNt (dz)

)∣∣∣∣
≤ KΛ

∣∣∣∣∫
R

(Φ(Xu(s)− z)− Φ(Xu(t)− z))µNt (dz)

∣∣∣∣
≤ KΛ

∫
R

|Φ(Xu(s)− z)− Φ(Xu(t)− z)|µNt (dz)

≤ KΦKΛ

∫
R

|Xu(s)−Xu(t)|µNt (dz)

= KΦKΛδ
Nt

N

≤ C3δ

(A.19)

Therefore, we have that

|λ(Xu(s), µ
N
s )− λ(Xu(t), µ

N
t )| < C1δ + C2h+ C3δ

= D1δ +D2h
(A.20)

giving us the desired bound.

A.6 Poisson Facts

Theorem 46. Let Nt be a Poisson random variable with rate λ. Then Nt
t
→ λ a.s.

and in L1 as t→∞.

Proof. We begin with the a.s. convergence. Letting btc be the integer part of t, we

can write N(t) = N(btc) + (N(t) − N(btc)) =
∑btc

k=1Xk + (N(t) − N(btc)), where

the Xk are i.i.d. Poi(1) random variables. Because Xk is integrable, we can apply

the strong law of large numbers to say that 1
btcN(btc) → λ a.s. We then have the
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following

lim
t→∞

N(t)

t
=
N(btc)
t

+
(N(t)−N(btc))

t

= lim
t→∞

N(btc)
btc

btc
t

+ lim
t→∞

N(t)−N(btc)
t

= λ+ lim
t→∞

N(t)−N(btc)
t

Notice that 0 ≤ N(t)−N(btc)
t

and

N(t)−N(btc)
t

≤ N(btc+ 1)−N(btc)
t

≤ N(btc+ 1])−N(btc)
btc

=
Xbtc+1

btc

But we know that lim
n→∞

∑n+1
k=1 Xk

n+ 1
= λ, so

λ = lim
n→∞

Xn+1

n

n

n+ 1
+

n

n+ 1

1

n

n∑
k=1

Xk

= lim
n→∞

Xn+1

n
+ λ

which means that limn→∞
Xn+1

n
= 0. This says that

lim
t→∞

N(t)

t
= λ+ lim

t→∞

N(t)−N(btc)
t

= λ a.s.

To see L1 convergence, we use the generalized LDCT. We note that
∣∣∣N(t)

t
− λ
∣∣∣ ≤

N(t)
t

+λ for all t and that by the argument above, N(t)
t

+λ converges pointwise to 2λ.
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Additionally, E
[
N(t)
t

+ λ
]

= 1
t
E[N(t)] + λ = 2λ, so E

[
N(t)
t

+ λ
]

clearly converges to

E[2λ] = 2λ. Therefore, all the conditions of the generalized LDCT are satisfied and

we can say that

lim
t→∞

E

[
N(t)

t
− λ
]

= E

[
lim
t→∞

∣∣∣∣N(t)

t
− λ
∣∣∣∣]

= 0

by the a.s. argument above. Therefore, we have L1 convergence as well.
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