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ASYMMETRIC COOPERATIVE MOTION IN ONE DIMENSION

LOUIGI ADDARIO-BERRY, ERIN BECKMAN, AND JESSICA LIN

Abstract. We prove distributional convergence for a family of random pro-
cesses on Z which we call asymmetric cooperative motions. The model gen-
eralizes the “totally asymmetric q-lazy hipster random walk” introduced by
Addario-Berry et al. [Probab. Theory Related Fields 178 (2020), pp. 437–
473]. We present a novel approach based on connecting a temporal recurrence
relation satisfied by the cumulative distribution functions of the process to the
theory of finite difference schemes for Hamilton-Jacobi equations, building off
of the convergence results of Crandall and Lions [Math. Comp. 43 (1984),
pp. 1–19]. We also point out some surprising lattice effects that can persist in
the distributional limit and propose several generalizations and directions for
future research.

1. Introduction

1.1. Description of the model and the main result. The purpose of this
paper is to prove distributional convergence for a family of random processes we
term cooperative motions and in so doing develop the connection, introduced in [1],
between convergence of recursive distributional equations and numerical approxi-
mation of partial differential equations (PDEs). The image underlying the name
“cooperative motion” is this: A walker is attempting to perform a random walk on
Z with initial distribution μ and step distribution ν, but at each step needs the help
of some fixed number m ≥ 1 of other individuals (independent walkers) in order to
move. If m additional, independent copies of the process all find themselves at the
same location as the first walker, then the walker succeeds in taking a ν-distributed
step; otherwise it stays put.

One natural probabilistic formulation of this model is as a tree-indexed random
process. Let T be the complete rooted (m + 1)-ary tree, with root labeled by ∅

and node v having children (vi, 1 ≤ i ≤ m + 1), so nodes at distance d from the
root are labeled by strings c1c2 . . . cd ∈ {1, . . . ,m+1}d. Write Tn for the subtree of
T containing only nodes at distance ≤ n from the root, and write Ln for the leaves
of Tn.

Next, fix a probability distribution μ on Z∪{−∞,∞}—it turns out to be useful
to allow ±∞ as initial positions—and let C = (Cv, v ∈ Ln) be independent and

Received by the editors April 7, 2021, and, in revised form, October 8, 2021.
2020 Mathematics Subject Classification. Primary 60F05, 60K35; Secondary 65M12, 35F21,

35F25.
Key words and phrases. Recursive distributional equations, monotone finite difference schemes,

monotone couplings.
The first author was partially supported by NSERC Discovery Grant 643473 and Discovery

Accelerator Supplement 643474. The second author was partially supported by NSERC Discovery
Grants 247764 and 643473. The third author was partially supported by NSERC Discovery Grant
247764, FRQNT Grant 250479, and the Canada Research Chairs program.

c©2022 by the authors.

2883

Licensed to Utah St Univ. Prepared on Thu Aug 11 18:22:53 EDT 2022 for download from IP 129.123.135.2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://www.ams.org/tran/
https://www.ams.org/tran/
https://doi.org/10.1090/tran/8581


2884 LOUIGI ADDARIO-BERRY, ERIN BECKMAN, AND JESSICA LIN

identically distributed (iid), μ-distributed random variables. Let D = (Dv, v ∈
Tn \ Ln) be a second collection of iid Z-valued random variables with some law
ν, independent of the variables Cv. We may view Tn as computing a function
with inputs at the leaves, given by C, and output at the root, using as auxiliary
randomness the elements of D, as follows. For v ∈ Tn \ Ln, recursively define

Cv =

{
Cv1 +Dv if Cv1 = Cv2 = . . . = Cv(m+1) ,

Cv1 otherwise.

The output of the function is the random variable C∅ indexed by the root; this
random variable has the distribution of a cooperative motion at time n.

There is a second formulation, which is slightly less visual but is easier to work
with, and which is the one we use for the rest of the paper. Let (Dn, n ≥ 0) be a
collection of iid integer random variables with common law ν. Define a sequence
(Xn, n ≥ 0) of extended real random variables as follows. Let X0 be chosen ac-

cording to μ. For n ≥ 0, let (X̃i
n, 1 ≤ i ≤ m) be independent copies of Xn, and

set

(1.1) Xn+1 =

{
Xn +Dn if Xn = X̃i

n for all i = 1, . . . ,m ,

Xn if Xn �= X̃i
n for some i ,

where we use the convention that ∞+ r = ∞ and −∞+ r = −∞ for r ∈ Z. With
this definition, the random variable Xn has the same distribution as Cn

∅
defined as

the output of the tree-indexed process.
In fact, the second formulation can be alternatively defined using a tree-indexed

process, but indexed by an (m+1)-ary canopy tree. This is an infinite tree containing
a distinguished one-way infinite path (vn, n ≥ 0), such that after removing the edge
vnvn+1, the connected component containing vn is a complete (m + 1)-ary tree of
depth n. Adapting the first formulation to the canopy tree in the natural way, the
quantity Xn may then be interpreted as the value of the cooperative motion at
node vn.

The entries of the sequence (Xn, n ≥ 0) are nicely coupled—for all n we have
Xn+1 − Xn ∈ {0, Dn}—so the process may be viewed as a type of random walk
with delay. However, the amount of the delay is tied to the law of the process itself,
since if Xn finds itself in an unlikely location, then the odds that X̃1

n, . . . , X̃
m
n are

all equal to Xn are low. As such, the position and the rate of motion are highly
dependent upon each other, which is the primary challenge in analyzing the process.

We are unable to characterize all possible asymptotic behaviours of cooperative
motion processes, but we do so for a special class of processes we call asymmetric,
q-lazy cooperative motions, where the step size distribution corresponds to a lazy
asymmetric simple random walk. That is, we choose the step sizes Dn to be dis-
tributed in the following way. Fix 0 < q ≤ 1 and 0 ≤ r ≤ 1 with r �= 1/2, then
let

(1.2) Dn =

⎧⎪⎨
⎪⎩
1 with probability rq,

0 with probability 1− q,

−1 with probability (1− r)q.

We require that r and q are not both equal to one (or else the process is determin-
istic). We write ACM(m, q, r, μ) for the law of the process (Xn, n ≥ 0) with step
sizes Dn as in (1.2) when started from initial distribution μ.
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Our main result, Theorem 1.1, shows that after rescaling, all ACM(m, q, r, μ)
processes are asymptotically Beta-distributed. Define for the duration of the paper

σ = (2r − 1)q,

and write sign(σ) = 1{σ>0} − 1{σ<0}.

Theorem 1.1. Fix an integer m ≥ 1, 0 < q ≤ 1, and 0 ≤ r ≤ 1, r �= 1/2, with
q and r not both equal to 1. Let μ be any probability distribution on Z, and let
(Xn, n ≥ 0) be ACM(m, q, r, μ)-distributed. Then

(1.3)
sign(σ)

m+ 1

(
mm

|σ|

) 1
m+1

· Xn

n1/(m+1)

d−→ B,

where B is Beta
(
m+1
m , 1

)
-distributed.

Theorem 1.1 generalizes a result from [1], which proves a limit theorem for the
ACM(m, q, r, μ) process in the case m = 1, r = 1. We focus on the case 1/2 < r ≤ 1,
in which case σ > 0; a simple symmetry of the ACM(m, q, r, μ) processes then yields
the result for the range 0 ≤ r < 1/2. (This is explained in more detail in Remark
4.2.)

1.2. Proof technique. Let B be Beta
(
m+1
m , 1

)
-distributed. Our approach to es-

tablishing (1.3) is to work directly with the cumulative distribution function (CDF)
of the rescaled random variable. In particular, we show that as n → ∞, the CDF

of n−1/(m+1)Xn converges to the CDF of (m+ 1)
(

σ
mm

)1/m+1
B, which is

(1.4) F (x) =

⎧⎪⎪⎨
⎪⎪⎩
0 if x ≤ 0,

m

σ
1
m (m+1)

m+1
m

x
m+1
m if 0 ≤ x ≤ (m+ 1)

(
σ

mm

)1/m+1
,

1 otherwise.

Our approach is based on the observation that the CDF of Xn in fact satisfies a fi-
nite difference equation which approximates a first-order Hamilton-Jacobi equation.
Note that if Fn

k := P(Xn < k), we have

Fn+1
k = P(Xn < k − 1) +P(Xn = k − 1, Xn+1 ≤ k − 1) +P(Xn = k,Xn+1 = k − 1)

(1.5)

= Fn
k−1 +P(Xn = k − 1)−P(Xn = k − 1, Xn+1 = k) +P(Xn = k,Xn+1 = k − 1)

= Fn
k−1 + (Fn

k − Fn
k−1)−P(Xn = k − 1)P(Dn = 1)

m∏
i=1

P(X̃i
n = k − 1)

+P(Xn = k)P(Dn = −1)

m∏
i=1

P(X̃i
n = k)

= Fn
k − rq (Fn

k − Fn
k−1)

m+1 + (1− r)q (Fn
k+1 − Fn

k )m+1 ,

and we may rewrite the final identity as

Fn+1
k − Fn

k = −rq(Fn
k − Fn

k−1)
m+1 + (1− r)q(Fn

k+1 − Fn
k )

m+1

= −rq|Fn
k − Fn

k−1|m+1 + (1− r)q|Fn
k+1 − Fn

k |m+1 .(1.6)

The introduction of | · | in (1.6) is allowed since Fn
k ≥ Fn

k−1 for all k. We write
the recursion in the form of (1.6) because this makes (1.6) a discrete analogue (or
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finite difference scheme) of the first-order PDE

(1.7) ut + σ|ux|m+1 = 0 in R× (0,∞).

In a nutshell, our approach to proving Theorem 1.1 is to exploit this connection,
showing that solutions of (1.6) closely approximate solutions of (1.7) after an appro-
priate rescaling, when n is large. The remainder of the introduction is principally
dedicated to elaborating on the details of this approach and the challenges to car-
rying it out.

Equation (1.7) is an example of a nonlinear Hamilton-Jacobi equation of the
form

ut +H(ux) = 0 in R× (0,∞),

with the Hamiltonian H : R → R defined by H(p) = σ|p|m+1. For general initial
data, (1.7) fails to have classical, smooth solutions for all time. The theory of viscos-
ity solutions introduced by Crandall and Lions [6,7], which are continuous but need
not be differentiable, provides a notion of weak solution for such equations. We will
hereafter refer to Crandall-Lions viscosity solutions simply as continuous viscosity
solutions. We provide an overview of relevant properties of viscosity solutions for
Hamilton-Jacobi equations in Appendix A.

While continuous viscosity solutions are perhaps the most well-studied notion of
weak solution for PDEs such as (1.7), our goal is to find a function u(x, t) solving
(1.7), which is meant to be an n → ∞ analogue of the distribution function

P

(
X�tn�

n1/(m+1)
< x

)
.

We note that for any initial distribution μ with μ(Z) = 1, we have

(1.8) P

(
X0

n1/(m+1)
< x

)
→

{
1 x > 0,

0 x < 0,

as n → ∞, with the behaviour at x = 0 depending on the distribution μ. This
implies that the continuous analogue u(x, 0) we seek will necessarily have a discon-
tinuity at x = 0. Such a discontinuity in the initial condition puts us outside of the
framework of continuous viscosity solutions.

There have been several attempts to define an appropriate notion of discontin-
uous viscosity solutions (see [5] for some references). One notion, introduced by
Barron and Jensen [4], is defined for convex Hamilton-Jacobi equations. This is our
situation; the Hamiltonian H(p) = σ|p|m+1 in (1.7) is a convex function. (It is for
this reason that we introduced absolute values in (1.6) and choose to focus on the
case σ > 0.) The Barron-Jensen theory applies exclusively to lower semicontinuous
functions, which is why we choose to define Fn

k = P(Xn < k), instead of the more
traditional definition of a CDF given by P(Xn ≤ k). Of course, this makes prac-
tically no difference to the probabilistic analysis. We will refer to Barron-Jensen
viscosity solutions as lsc (lower semicontinuous) viscosity solutions (see Appendix
A for more details about the properties of these solutions which we make use of).
Throughout this paper, every continuous (resp. lsc) viscosity solution we consider
is in fact the unique continuous (resp. lsc) solution satisfying the PDE in question
(see Theorem A.2 and Theorem A.7). Moreover, the two notions coincide for con-
tinuous functions. In particular, any lsc viscosity solution which is a continuous
function is also a continuous viscosity solution (see Theorem A.6).
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ASYMMETRIC COOPERATIVE MOTION IN ONE DIMENSION 2887

It turns out that the function F introduced in (1.4) is nothing more than F (x) =
u(x, 1), where u(x, t) is the lsc viscosity solution of the initial value problem

(1.9)

{
ut + σ|ux|m+1 = 0 in R× (0,∞),

u(x, 0) = 1{x>0} in R.

The lsc viscosity solution of (1.9) can be explicitly computed. In fact, for future
use, we will compute the lsc viscosity solution of the more general PDE

(1.10)

{
ua,b
t + σ|ua,b

x |m+1 = 0 in R× (0,∞),

ua,b(x, 0) = a1{x≤0} + b1{x>0} in R,

for 0 ≤ a < b ≤ 1. Since (1.10) is a convex Hamilton-Jacobi equation, Theorem A.7
guarantees that the corresponding lsc viscosity solution is given by the Hopf-Lax
formula from control theory,

(1.11) ua,b(x, t) = inf
y∈R

{
ua,b(y, 0) + tH∗

(
x− y

t

)}
,

where H∗ is the Legendre transform of H, defined by

H∗(p) = sup
α∈R

(αp−H(α)) .

For the HamiltonianH(p) = σ|p|m+1, asH is superlinear (limp→∞ H(p)/|p| = +∞)
and ua,b(x, 0) is lower semicontinuous, the infimum in (1.11) is achieved. We may
thus compute explicitly that for this Hamiltonian,

H∗(p) = sup
α∈R

(
αp− σ|α|m+1

)

=
|p|m+1

m

(σ(m+ 1))
1
m

− σ− 1
m

∣∣∣∣ p

m+ 1

∣∣∣∣
m+1
m

= σ− 1
m |p|

m+1
m

m

(m+ 1)
m+1
m

.(1.12)

It follows that the lsc viscosity solution ua,b of (1.10) is given by

ua,b(x, t) = inf
y∈R

{
a1{y≤0} + b1{y>0} + tH∗

(
x− y

t

)}

= inf
y∈R

{
a1{y≤0} + b1{y>0} + tσ− 1

m

∣∣∣∣x− y

t

∣∣∣∣
m+1
m m

(m+ 1)
m+1
m

}

= inf
y∈R

{
a1{y≤0} + b1{y>0} +

1

t
1
m

σ− 1
m

m

(m+ 1)
m+1
m

|x− y|
m+1
m

}
.

A straightforward analysis yields that the preceding infimum is achieved at

y =

⎧⎨
⎩0 if 0 ≤

(
xm+1

t

) 1
m ≤ (b− a)σ

1
m

(m+1)
m+1
m

m ,

x otherwise.
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This implies that
(1.13)

ua,b(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a if x ≤ 0,

a+ m

σ
1
m (m+1)

m+1
m

(
xm+1

t

) 1
m

if 0 ≤
(

xm+1

t

) 1
m ≤ (b− a)σ

1
m

(m+1)
m+1
m

m
,

b otherwise.

In the case when a = 0, and b = 1 (so for u solving (1.9)), we may rewrite this as

(1.14) u(x, t) =

⎧⎪⎪⎨
⎪⎪⎩
0 if x ≤ 0,

m

σ
1
m (m+1)

m+1
m

(
xm+1

t

) 1
m

if 0 ≤ x ≤ (m+ 1)
(

σt
mm

)1/m+1
,

1 otherwise,

which agrees with the rescaled Beta CDF given in (1.4) when t = 1. With regards
to demonstrating the convergence of the finite difference scheme (1.6) to solutions
of (1.7), we begin by recalling a robust result of Crandall and Lions [8]. In [8],
the authors identify sufficient conditions for functions defined by finite difference
schemes on a space-time mesh ΔxZ×ΔtN to converge to the continuous viscosity
solution of the corresponding Hamilon-Jacobi equation (such as (1.7)). Their gen-
eral result is stated as Theorem 2.3. Upon an appropriate scaling, we may convert
(1.6) to a finite difference relation on ΔxZ × ΔtN. Theorem 2.3 implies that, if
(1.6) satisfies a monotonicity condition (see Definition 2.2) and F 0

k := u0(kΔx) is
the discretization of a Lipschitz continuous function u0 on the mesh ΔxZ, then for
all sufficiently small Δx, the values FN

k defined by the finite difference scheme are
uniformly close to viscosity solutions u(kΔx, NΔt) of the PDE with u(x, 0) = u0(x),
for NΔt lying in any compact time interval [0, T ]. The Crandall-Lions theory, how-
ever, relies upon the initial data being Lipschitz continuous, as well as using the
theory of continuous viscosity solutions. Since we aim to show that the CDFs of
the rescaled ACM(m, q, r, μ) random variables (Xnn

−1/(m+1), n ≥ 0) converge to
the lsc viscosity solution of (1.9), this precludes a direct application of the results of
[8] to prove Theorem 1.1. Furthermore, to the best of our knowledge, no numerical
approximation results analogous to those of [8] have been proved for lsc viscosity
solutions.

Probabilistically, the Lipschitz continuity required by the Crandall-Lions theory
is also an issue. It asks that the CDF of X0/n

1/(m+1) be a discretization of a
Lipschitz function, with Lipschitz constant independent of n; but for a fixed initial
distribution, this is impossible (recall (1.8)). To obtain such Lipschitz continuity,
the Crandall-Lions theory thus requires the initial condition for the discrete process
to depend on the mesh size, which probabilistically translates to requiring the initial
distribution of the cooperative motion to depend on the target time n at which we
wish to observe the process.

In order to make use of the results of [8] in our setting, we use further properties
of the probabilistic model in order to demonstrate convergence to the lsc viscosity
solution (which corresponds to the Beta-distributed limit in Theorem 1.1). In par-
ticular, we prove a discrete stochastic monotonicity result, Lemma 3.2, which allows
us to couple the process started from different initial distributions. This coupling is
surprisingly delicate; it is not the case that the cooperative motion evolution pre-
serves stochastic ordering for arbitrary initial distributions. However, we prove that
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ASYMMETRIC COOPERATIVE MOTION IN ONE DIMENSION 2889

it preserves stochastic ordering whenever the initial distribution is not too singular
(i.e. when all atoms satisfy a quantitative upper bound, depending on q and m).
Having established this allows us to use the results of Crandall and Lions [8] to prove
convergence to the lsc viscosity solution. We stochastically sandwich the evolution
started from one of these initial conditions with processes started from Lipschitz
continuous (n-dependent) initial conditions, up to an error term which can be made
arbitrarily small (after rescaling by n1/(m+1)). This allows us to demonstrate the
convergence in (1.3) for sufficiently non-singular initial distributions; see Proposi-
tion 3.1. We then conclude by showing that any initial distribution “relaxes” to a
sufficiently non-singular distribution in a bounded number of steps.

We mention that a recurrence similar to (1.6) can be written for the probability
mass function pnk = P(Xn = k):

(1.15) pn+1
k −pnk = −rq

(
(pnk )

m+1 − (pnk−1)
m+1

)
+(1−r)q

(
(pnk+1)

m+1 − (pnk)
m+1

)
.

This recurrence can be interpreted as a discretization of the scalar conservation law

(1.16) vt = −σ(vm+1)x.

Indeed, this connection was observed in [1] in the special case when m = 1, r = 1,
and the proof in [1] of the m = 1, r = 1 case of Theorem 1.1 relied upon similar
numerical PDE L1 convergence results for finite difference schemes of scalar con-
servation laws. In particular, rescaled solutions of the recursion above converge in
L1 to the unique entropy solutions of (1.16). From the theory of PDEs, it is well-
known that in the one-dimensional setting, entropy solutions of (1.16) correspond
precisely to derivatives of viscosity solutions of (1.7). This motivated our approach
of working directly with the CDFs in this paper, and using viscosity solutions meth-
ods in this setting. The advantages of working with viscosity solutions include (a)
the fact that the solution theory, at least as it relates to such probabilistic models,
is better developed for viscosity solutions than for the corresponding entropy solu-
tions and (b) the fact that working in the “integrated” setting gives the solutions
greater regularity, which makes the resulting proofs more direct.

The rest of the paper proceeds as follows. In Section 2, we review the results
of Crandall and Lions [8] and use them to demonstrate convergence of CDFs of a
rescaled ACM(m, q, r, μ) process with a “diffuse” initial condition, which approxi-
mates a Lipschitz continuous function. In Section 3, we show convergence of CDFs
of a rescaled ACM(m, q, r, μ) process with initial distribution μ which has no overly
large atoms in its support. In Section 4, we remove this hypothesis on the size of
the atoms of μ, and complete the proof of Theorem 1.1. Section 5 concerns the
limitations of the approach taken in this paper and includes Theorem 5.4, which
presents a provable obstacle to applying our methodology to establish convergence
of cooperative motion-type processes with |Dn| > 1. This section also presents The-
orem 5.1, which shows that when the step size is an integer multiple of a Bernoulli
random variable, the resulting lattice effects lead to limits which are mixtures of
Beta distributions. Finally, Appendix A provides an overview of continuous and
lsc viscosity solutions and describes several important properties of such solutions
that we use throughout the paper.

1.3. Notation. Before proceeding, we introduce some terminological conventions.
Given a random variable X, we define the CDF FX : R → [0, 1] of X by FX(x) =
P(X < x); as mentioned in the introduction, we use this definition rather than
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2890 LOUIGI ADDARIO-BERRY, ERIN BECKMAN, AND JESSICA LIN

the standard FX(x) = P(X ≤ x) to make it easier to appeal to the relevant PDE
theory, which has been developed for lower semicontinuous functions.

We say a function F : R → [0, 1] is a CDF if it is the CDF of an R-valued random
variable and that F is an extended CDF if it is the CDF of an extended random
variable (i.e. a random variable taking values in R ∪ {±∞}).

For random variables X,Y taking values in R∪{±∞}, we write X 	 Y and say
that Y stochastically dominates X if P(X < x) ≥ P(Y < x) for all x ∈ R.

Let (Xn, n ≥ 0) and (X̃n, n ≥ 0) be ACM(m, q, r, μ)- and ACM(m, q, r, μ̃)-

distributed, respectively. Suppose that X̃0 	 X0. Then we say that the ACM
evolution is stochastically monotone for μ and μ̃ if X̃n 	 Xn for all n ≥ 0. In other
words, the ACM evolution is stochastically monotone for μ and μ̃ if it preserves
their stochastic ordering in time.

2. Finite difference schemes for diffuse initial conditions

As mentioned in Section 1, our approach is to interpret CDFs of the discrete
random variables (Xn, n ≥ 0) as solutions of a finite difference scheme. As be-
fore, fix m ∈ N with m ≥ 1, q ∈ (0, 1], r ∈ (1/2, 1], with q and r not both 1,
and a probability distribution μ supported on Z ∪ {−∞,∞}. Let (Xn, n ≥ 0) be
ACM(m, q, r, μ)-distributed, and for k ∈ Z write Fn

k = Fn
k (μ) = P(Xn < k). (We

suppress the dependence on m, q, and r as they are fixed throughout, and also
suppress the dependence on μ whenever possible.) Then (Fn

k )k∈Z,n∈N is defined by
(2.1){

Fn+1
k − Fn

k = −rq
(
Fn
k − Fn

k−1

)m+1
+ (1− r)q

(
Fn
k+1 − Fn

k

)m+1
n ≥ 0, k ∈ Z,

F 0
k = μ[−∞, k) k ∈ Z.

Since Fn
k is nondecreasing in k for all n ∈ N, (2.1) can be rewritten as

(2.2){
Fn+1
k − Fn

k = −rq
∣∣Fn

k − Fn
k−1

∣∣m+1
+ (1− r)q

∣∣Fn
k+1 − Fn

k

∣∣m+1
n ≥ 0, k ∈ Z,

F 0
k = μ[−∞, k) k ∈ Z ,

and the function defined by (2.2) is identical to the function defined by (2.1).
We will use (2.1) and (2.2) interchangeably, and will also use the fact that Fn

k is
nondecreasing in k, for all n ∈ N, frequently in what follows.

The main result of this section is Proposition 2.1, which states that solutions of
the recurrence relation from (2.2) with nondecreasing, Lipschitz initial data con-
verge to solutions of the appropriate Hamilton-Jacobi equation.

Proposition 2.1. Let u0 be a Lipschitz continuous extended CDF with Lipschitz
constant K. Fix N ∈ N and define a probability distribution μN on Z ∪ {−∞,∞}
by

μN [−∞, k) := u0(kN
−1/(m+1))

for k ∈ Z. Let (Xn, n ≥ 0) be ACM(m, q, r, μN )-distributed, and let Fn
k = Fn

k (μN ) =
P(Xn < k). Finally, fix T > 0. Then there exist N0 = N0(m, q,K) and c =
c(K,m, σ, T ) such that if N ≥ N0,

(2.3) sup
0≤t≤T

sup
k∈Z

∣∣∣∣F �Nt�
k − u

( k

N1/(m+1)
, t
)∣∣∣∣ ≤ c

N1/2
,
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where u is the continuous viscosity solution of

(2.4)

{
ut + σ|ux|m+1 = 0 in R× (0,∞),

u(x, 0) = u0(x) in R.

It follows that u is an extended CDF and that

(2.5) sup
x∈R

∣∣∣∣P( XN

N1/(m+1)
< x

)
− u(x, 1)

∣∣∣∣ ≤ c

N1/2
.

In order to prove this proposition, we require the framework of monotone finite
different schemes for Hamilton-Jacobi equations. We next introduce this framework
and relate it to the evolution of the CDF of cooperative motion.

We may imagine numerically approximating the solution of a Hamilton-Jacobi
equation of the form

(2.6)

{
ut +H(ux) = 0 in R× (0,∞),

u(x, 0) = u0(x) in R

as follows. Fix temporal and spatial mesh sizes (Δt and Δx, respectively). Set
U0
k = u0(kΔx) for k ∈ Z, and for n ≥ 0 define Un+1

k by

(2.7) Un+1
k = G(Un

k+1, U
n
k , U

n
k−1) := Un

k −Δth

(
Un
k+1 − Un

k

Δx
,
Un
k − Un

k−1

Δx

)
.

Here h : R×R → R is a function to be chosen, which is meant to act as an approx-
imation of H. We may write the function G in (2.7) as G(x, y, z) = GΔ(x, y, z) =
y −Δth(

x−y
Δx

, y−z
Δx

), where Δ = (Δx,Δt).

We now use (2.7) to define a rescaled field of values

uΔ : ΔxZ×ΔtN → R

by setting uΔ(kΔx, nΔt) := Un
k . With this definition, (2.7) is equivalent to the

statement that

uΔ(kΔx, nΔt +Δt)− uΔ(kΔx, nΔt)

Δt

+ h
(uΔ(kΔx+Δx, nΔt)−uΔ(kΔx, nΔt)

Δx
,
uΔ(kΔx, nΔt)−uΔ(kΔx−Δx, nΔt)

Δx

)
= 0.

Each of the arguments of g looks like an approximation of uΔ
x , so this in some sense

looks formally like a discretization of (2.6) on the space-time mesh ΔxZ×ΔtN. We
refer to (2.7) as a finite difference scheme for the initial value problem (2.6).

It turns out that, under suitable regularity assumptions on the initial condition
u0 and the Hamiltonian H, the sufficient conditions on (2.7) for uΔ, or equivalently
(Un

k )k∈Z,n∈N, to well-approximate u as Δt and Δx → 0 are consistency and mono-
tonicity. The consistency condition is simply that h(p, p) = H(p) for all p ∈ R.
The monotonicity condition is as follows.

Definition 2.2. We say a recurrence of the form (2.7) is monotone on an interval
[λ,Λ] ⊆ R if G(Un

k+1, U
n
k , U

n
k−1) is a nondecreasing function of each argument so

long as for all k,

(2.8) λ ≤ (Δx)
−1

(
Un
k+1 − Un

k

)
≤ Λ.
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We now state the main result from [8], specialized to the one-dimensional setting
of the current paper, on the quality of approximation provided by monotone finite
difference schemes for Hamilton-Jacobi equations.

Theorem 2.3 (Theorem 1, [8]). Let u : R× (0,∞) → R be the continuous viscosity
solution of

(2.9)

{
ut +H(ux) = 0 in R× (0,∞),

u(x, 0) = u0(x) in R,

where H : R → R is continuous and u0 is bounded and Lipschitz continuous with
Lipschitz constant K. Fix Δx > 0 and Δt > 0, let U0

k := u0(kΔx), and define Un
k

by a general scheme of the form (2.7).
If (2.7) is consistent and monotone on [−(K + 1),K + 1], then for any T > 0,

there exists c, depending on sup |u0|,K,H, and T , so that

(2.10) sup
n∈N,nΔt∈[0,T ]

sup
k∈Z

|Un
k − u(kΔx, nΔt)| ≤ c

√
Δt.

Before connecting Theorem 2.3 to cooperative motion, it is instructive to further
discuss the meaning and value of monotonicity in this setting. (The following
discussion is inspired by the proof of [8, Proposition 3.1].) Fix K > 0 and two

sets of initial conditions (U0
k )k∈Z and (Ũ0

k )k∈Z with U0
k ≤ Ũ0

k , then set Un+1
k =

G(Un
k+1, U

n
k , U

n
k−1) and Ũn+1

k = G(Ũn
k+1, Ũ

n
k , Ũ

n
k−1) for n ≥ 0 as in (2.7).

Suppose that G is monotone on [−K,K], and that

(2.11)

∣∣U0
k − U0

k−1

∣∣
Δx

≤ K and

∣∣∣Ũ0
k − Ũ0

k−1

∣∣∣
Δx

≤ K

for all k. Then monotonicity implies that

(2.12) U1
k = G(U0

k+1, U
0
k , U

0
k−1) ≤ G(Ũ0

k+1, Ũ
0
k , Ũ

0
k−1) = Ũ1

k .

Next, let (W 0
k )k∈Z be any initial condition with supk Δ

−1
x |W 0

k − W 0
k−1| ≤ K, and

set Wn+1
k = G(Wn

k+1,W
n
k ,W

n
k−1) for n ≥ 0 and k ∈ Z. Write λ = supk |W 0

k − U0
k |.

Let V 0
k = U0

k + λ, and set V 1
k = G(V 0

k+1, V
0
k , V

0
k−1) = U1

k + λ. By the choice of λ,

we have W 0
k ≤ V 0

k . Then monotonicity gives that

W 1
k ≤ V 1

k = U1
k + λ ,

and a symmetric argument gives that W 1
k ≥ U1

k − λ, so

sup
k

|W 1
k − U1

k | ≤ λ.

We apply this with the specific choice of initial condition W 0
k = U0

k−1. Since

W 1
k = U1

k−1, the preceding bound gives

sup
k

|U1
k − U1

k−1| = sup
k

|U1
k −W 1

k | ≤ λ = sup
k

|U0
k −W 0

k | = sup
k

|U0
k − U0

k−1| ≤ KΔx.

A similar analysis allows us to conclude that

sup
k

|Ũ1
k − Ũ1

k−1| ≤ KΔx.

By the two preceding bounds and (2.12), it follows by induction that Un
k ≤ Ũn

k for
all n ∈ N and k ∈ Z and that supk |Un

k −Un
k−1| ≤ KΔx for all n. In short, equation

(2.8), which can be viewed as a type of discrete Lipschitz bound on Un
k , allows one
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to show that an order relation between two initial conditions persists for all positive
times.

Remark 2.4. Whenever the initial condition (U0
k )k∈Z is nondecreasing in k, the

above argument shows that if G is monotone on [0,K] and supk(U
0
k−U0

k−1) ≤ KΔx,
then (Un

k )k∈Z is nondecreasing in k and supk(U
n
k − Un

k−1) ≤ KΔx for all n ∈ N. It
follows from this that if u0 is nondecreasing, then in order to verify the condition
of Theorem 2.3 one need only check that (2.7) is monotone on [0,K + 1].

We now specialize the above discussion to the specific setting of our paper, so
again let Fn

k = P(Xn < k) where (Xn, n ≥ 0) is ACM(m, q, r, μ)-distributed. Given
spatial and temporal mesh sizes (Δx and Δt, respectively), we may use the field
of values (Fn

k )k∈Z,n∈N to define a rescaled field f = fΔt,Δx
: ΔxZ × ΔtN → R by

setting f(kΔx, nΔt) := Fn
k .

In order to identify an appropriate scaling relationship between Δx and Δt, we
seek a continuous space-time scaling which preserves the PDE. In particular, if u
solves (1.9), then for any ρ ∈ R, uρ(x, t) := u(ρx, ρm+1t) also solves (1.9). This
suggests that the temporal and spatial mesh sizes should satisfy the relation

(2.13) (Δx)
m+1 = Δt.

With this scaling relation, we may rewrite (2.1) as

(2.14) Fn+1
k = Fn

k −Δt

[
rq

(
Fn
k − Fn

k−1

Δx

)m+1

− (1− r)q

(
Fn
k+1 − Fn

k

Δx

)m+1
]
,

which, since Fn
k is nondecreasing in k, we may re-express as

(2.15) Fn+1
k = Fn

k −Δt

[
rq

∣∣∣∣Fn
k − Fn

k−1

Δx

∣∣∣∣
m+1

− (1− r)q

∣∣∣∣Fn
k+1 − Fn

k

Δx

∣∣∣∣
m+1

]
.

This equation has precisely the form of (2.7) with

G(x, y, z) = y −Δt[−(1− r)q|x−y
Δx

|m+1 + rq|y−z
Δx

|m+1]

= y + (1− r)q|x− y|m+1 − rq|y − z|m+1,

the second equality holding due to (2.13).
Now fix probability distributions μ, μ̃ on Z ∪ {±∞} with μ̃ 	 μ, let (Xn, n ≥ 0)

and (X̃n, n ≥ 0) be ACM(m, q, r, μ)- and ACM(m, q, r, μ̃)-distributed, respectively,

and set Fn
k = P(Xn < k) and F̃n

k = P(X̃n < k) so that (Fn
k )k∈Z,n∈N and

(F̃n
k )k∈Z,n∈N both satisfy (2.15) but with different initial conditions. The fact that

μ̃ 	 μ means that F 0
k ≤ F̃ 0

k .
For a given Λ > 0, if G is monotone on [0,Λ] and supk∈Z

(F 0
k − F 0

k−1) ≤ Λ

and supk∈Z(F̃
0
k − F̃ 0

k−1) ≤ Λ, then (2.12) gives that F 1
k ≤ F̃ 1

k and inductively that

Fn
k ≤ F̃n

k for all n. In other words, we can think of monotonicity as a sufficient
condition which guarantees that the cooperative motion will preserve stochastic
ordering in time. In Section 3, we will use a variation of this approach to identify
the value of Λ, and thereby a sufficient condition, which guarantees stochastic
monotonicity.

Proof of Proposition 2.1. Let N0 :=
(
[q(m+ 1)]1/m(K + 1)

)m+1
and fix N ≥ N0.

We choose Δx = N−1/(m+1) and Δt = N−1, so that Δx and Δt satisfy (2.13).
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This implies that F
(·)
k (μN ) is defined by (2.15). The proof relies upon verifying the

hypotheses of Theorem 2.3 for Un
k = Fn

k .
Consistency is easily verified in our setting. The Hamilton-Jacobi equation

in question is (2.4), for which H(p) = σ|p|m+1. Moreover, we have h(x, y) =
−(1 − r)q|x|m+1 + rq|y|m+1, so h(p, p) = (2r − 1)q|p|m+1 = σ|p|m+1 = H(p), as
desired.

Now we check monotonicity. As u0 is nondecreasing, by Remark 2.4, we only
need to verify that (2.15) or, equivalently, (2.14) is monotone in [0,K + 1].

To verify monotonicity of (2.14), we differentiate

G(Fn
k+1, F

n
k , F

n
k−1) = Fn

k −rqΔt

(
Fn
k − Fn

k−1

Δx

)m+1

+(1−r)qΔt

(
Fn
k+1 − Fn

k

Δx

)m+1

in each argument, in the region 0 ≤ (Δx)
−1(Fn

k+1−Fn
k ), (Δx)

−1(Fn
k −Fn

k−1) ≤ K+1.
Differentiating the right hand side with respect to Fn

k , we have

1− rq(m+ 1)
Δt

Δx

(
Fn
k − Fn

k−1

Δx

)m

− (1− r)q(m+ 1)
Δt

Δx

(
Fn
k+1 − Fn

k

Δx

)m

≥ 1− rq(m+ 1)
Δt

Δx
(K + 1)m − (1− r)q(m+ 1)

Δt

Δx
(K + 1)m

= 1− q(m+ 1)(Δx)
m(K + 1)m.

As N ≥ N0, we have that

(Δx)
m = N−m/(m+1) ≤ [q(m+ 1)]−1(K + 1)−m,

which implies that G(Fn
k+1, ·, Fn

k−1) is nondecreasing. Similar computations show
that both G(·, Fn

k , F
n
k−1) and G(Fn

k+1, F
n
k , ·) are nondecreasing. This implies that

(2.14) is monotone on [0,K+1], so by Theorem 2.3, we then have that for N ≥ N0,
for any T > 0, there is c = c(K,m, q, T ) such that

sup
0≤j/N≤T

sup
k∈Z

∣∣∣∣F j
k − u

(
k

N1/(m+1)
,
j

N

)∣∣∣∣ ≤ cN− 1
2 ;

recall that Δt = N−1, so j/N = jΔt. We may rewrite this bound as

sup
0≤t≤T

sup
k∈Z

∣∣∣∣F �Nt�
k − u

(
k

N1/(m+1)
,
1

N
�Nt�

)∣∣∣∣ ≤ cN− 1
2 .

By Proposition A.4, the continuous viscosity solution u solving (2.4) is globally
Lipschitz continuous in space and time. Therefore,

sup
0≤t≤T

sup
k∈Z

∣∣∣∣F �Nt�
k − u

(
k

N1/(m+1)
, t

)∣∣∣∣
≤ sup

0≤t≤T
sup
k∈Z

∣∣∣∣F �Nt�
k − u

(
k

N1/(m+1)
,
1

N
�Nt�

)∣∣∣∣
+ sup

0≤t≤T
sup
k∈Z

∣∣∣∣u
(

k

N1/(m+1)
,
1

N
�Nt�

)
− u

(
k

N1/(m+1)
, t

)∣∣∣∣
≤ cN− 1

2 + C sup
0≤t≤T

∣∣∣∣ 1N �Nt� − t

∣∣∣∣ ≤ c̃N− 1
2 ,

and this yields (2.3); equation (2.5) follows as it is simply a restating of (2.3) in
the special case when t = 1. Finally, (2.5) gives that u(x, 1) is the pointwise limit
of an extended CDF, so u(x, 1) is itself an extended CDF. �
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3. p∗-bounded singular initial conditions

The convergence results of the previous section require that the finite difference
scheme (Fn

k )k∈Z,n∈N begins with an initial condition μN which is a discretization
of a Lipschitz function at scale Δx (depending on N). In this section, we build on
those convergence results to prove distributional limit theorems for certain fixed
(rather than varying in N) initial conditions. Let

(3.1) p∗ :=

(
1

q(m+ 1)

)1/m

.

Note that p∗ > 1/2 whenever m and q are not both equal to 1, and p∗ = 1/2 if
and only if m = q = 1. We say that an extended probability distribution μ is
p∗-bounded if

sup
x∈Z∪{−∞,∞}

μ({x}) ≤ p∗.

The goal of this section is to prove Proposition 3.1, which essentially states that
Theorem 1.1 holds for p∗-bounded initial conditions.

Proposition 3.1. Let (Xn, n ≥ 0) be ACM(m, q, r, μ)-distributed with μ a proba-
bility distribution on Z. If μ is p∗-bounded, then

lim
n→∞

P

(
Xn

n1/(m+1)
< x

)
= u(x, 1)

uniformly in x, where u(x, t) is given by (1.14).

The proof of Proposition 3.1 relies on comparison between the ACM evolution
with p∗-bounded initial conditions to ACM evolutions with Lipschitz continuous
initial conditions. To establish the possibility of such comparisons, we prove that
the ACM evolution is stochastically monotone on a much broader class of initial
conditions than what is covered by Proposition 2.1. (It may be useful to revisit
the discussion preceding the proof of Proposition 2.1 at this point.) We first show
for the class of p∗-bounded distributions, stochastic ordering is preserved in one
time step of the ACM evolution. We then show that the CDFs at future time steps
remain in the family of p∗-bounded distributions. This is exactly the content of the
next two lemmas:

Lemma 3.2. Let μX and μY be p∗-bounded probability distributions on Z∪{−∞,∞},
and let (Xn, n ≥ 0) be ACM(m, q, r, μX)-distributed and (Yn, n ≥ 0) be
ACM(m, q, r, μY )-distributed. If Y0 	 X0 then Y1 	 X1.

Lemma 3.3. Let (Xn, n ≥ 0) be ACM(m, q, r, μ)-distributed and define P (Xn =
k) =: pnk . Then for all k ∈ Z

(3.2) pn+1
k ≤ max(pnk−1, p

n
k , p

n
k+1).

Proof of Lemma 3.2. Recall that G(x, y, z) = y+(1−r)q|x−y|m+1−rq|y−z|m+1.
Note that for 0 ≤ z ≤ y ≤ x, G(x, y, z) is nondecreasing in x and z, and for
0 ≤ z ≤ y ≤ x, G is nondecreasing in y provided that

1− (m+ 1)rq(y − z)m − (m+ 1)(1− r)q(x− y)m ≥ 0 ,

which is true whenever y − z, x− y ≤ p∗. Therefore, G is monotone on [0, p∗].
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Now write F 0
k = P(X0 < k) = μX [−∞, k) and F̃ 0

k = P(Y0 < k) = μY [−∞, k).

Since Y0 	 X0, we have that for all k ∈ Z, F 0
k ≤ F̃ 0

k , and moreover, F 0
k −F 0

k−1 ≤ p∗

and F̃ 0
k − F̃ 0

k−1 ≤ p∗. Since G is monotone on [0, p∗] it follows that

P(X1 < k) = F 1
k = G(F 0

k+1, F
0
k , F

0
k−1) ≤ G(F̃ 0

k+1F̃
0
k , F̃

0
k−1) = F̃ 1

k = P(Y1 < k) ,

so Y1 	 X1, as required. �
The choice of p∗ as an upper bound for a single site probability in Lemma 3.2 is

sufficient, but since p∗ is independent of r, one may ask whether p∗ is the tightest
upper bound which gives stochastic ordering of the process. In fact, it is not in
general: a little algebra shows that the necessary upper bound is the value M ≥ 1/2
such that

1

q(m+ 1)
= rMm + (1− r)(1−M)m.

From this definition and the fact that M ≥ 1−M , it follows that M ≥ p∗. There
are cases when M = p∗, in particular when r = 1 or when m = q = 1, but this
equality does not hold in general. For example, if m = 1, q = 2/3, r = 2/3, we see
that p∗ = 3/4 while M = 5/4.

We next introduce an additional technical lemma needed in the proof of Lemma
3.3. Write f(p) := p − qpm+1; we will use that f is increasing on [0, p∗) and
decreasing on (p∗, 1].

Lemma 3.4. Let g(x, y) = f(x)− f(y) with f(x) = x− qxm+1. If 0 < q ≤ 1, then
g(a, b) ≥ 0 whenever a ≥ b ≥ 0 and a + b ≤ 1. Under the additional constraint
a > p∗, we have

(3.3) g(a, b) ≥ min(g(p∗, 1− p∗), 1− q) ≥ 0.

Moreover, when q < 1, min(g(p∗, 1− p∗), 1− q) > 0.

Proof. First, we note that

∂

∂x
g(x, y) = 1− q(m+ 1)xm,

∂

∂y
g(x, y) = −1 + q(m+ 1)ym.

We are concerned with the behavior of the function h in the regions A and B
shown in Figure 1. Formally, if C = {(x, y) : 0 ≤ y ≤ x, y ≤ 1 − x}, then
A = {(x, y) ∈ C : x ≤ p∗} and B = {(x, y) ∈ C : x > p∗}.

If (x, y) ∈ A then since f is increasing on [0, p∗) and in this region 0 ≤ y ≤ x ≤ p∗,
it follows that g(x, y) = f(x)− f(y) ≥ 0.

To determine the behavior in region B, notice that in this region, ∂h
∂x < 0 and

∂h
∂y < 0. Therefore,

inf
(x,y)∈B

g(x, y) = inf
x∈(p∗,1]

g(x, 1− x).

Moreover, since x > 1/2 and

∂2

∂x2
g(x, 1− x) = q(m+ 1)m((1− x)m−1 − xm−1) ,

the difference (1− x)m−1 − xm−1 is strictly negative. This implies that g(x, 1− x)
is strictly concave for x ∈ (1/2, 1). Since p∗ ≥ 1/2, we thus have

(3.4) inf
(x,y)∈B

g(x, y) = min
x∈{p∗,1}

g(x, 1− x) ≥ min
x∈{1/2,1}

g(x, 1− x).
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0 1/2 p∗ 1
0

1/2

p∗

1

A

B

Figure 1. Lemma 3.4 states that g(a, b) is positive for (a, b) ∈ A
and is greater than min(g(p∗, 1− p∗), 1− q) for (a, b) ∈ B.

Since g(1/2, 1/2) = 0 and g(1, 0) = 1− q ≥ 0, it follows that g(x, 1− x) ≥ 0 for all
x ∈ [1/2, 1].

From the relations in (3.4) and the fact that g(x, 1 − x) is strictly concave on
(1/2, 1), we see that when x > p∗

g(x, y) ≥ min(g(p∗, 1− p∗), 1− q) ≥ 0,

as desired. Notice that when q < 1, we have that p∗ > 1/2, so the strict concavity
of g(x, 1 − x) tells us that in this case g(p∗, 1 − p∗) > 0. This fact proves the last
statement of the lemma; when q < 1, we have that min(g(p∗, 1−p∗), 1−q) > 0. �

Equipped with this technical lemma, we can now prove Lemma 3.3.

Proof of Lemma 3.3. We prove the lemma in cases, according to which site has the
maximum value. In each case, we will show that max(pnk−1, p

n
k , p

n
k+1)− pn+1

k ≥ 0.

Recall the recursion equation for pn+1
k :

pn+1
k = pnk + q

[
r(pnk)

m+1 − (pnk−1)
m+1 + (1− r)(pnk+1)

m+1)m+1
]
.

First, when pnk = max(pnk−1, p
n
k , p

n
k+1), we have

pnk − pn+1
k = −q

[
r(pnk−1)

m+1 − (pnk)
m+1 + (1− r)(pnk+1)

m+1
]

≥ −q
[
r (pnk )

m+1 − (pnk )
m+1 + (1− r) (pnk )

m+1
]

= 0,

where we have used the fact that the function xm+1 is increasing for positive x
values.
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Second, we consider the case when pnk+1 = max(pnk−1, p
n
k , p

n
k+1). In this case, we

have

pnk+1 − pn+1
k = pnk+1 −

[
pnk + qr(pnk−1)

m+1 − q(pnk )
m+1 + (1− r)q(pnk+1)

m+1
]

≥ pnk+1 −
[
pnk + qr(pnk+1)

m+1 − q(pnk)
m+1 + (1− r)q(pnk+1)

m+1
]

=
[
pnk+1 − q(pnk+1)

m+1
]
−
[
pnk − q(pnk )

m+1
]

= g(pnk+1, p
n
k ),

where g(x, y) is defined as in Lemma 3.4. Because pnk+1 ≥ pnk and pnk+1 + pnk ≤ 1,

we can apply Lemma 3.4 to say that pnk+1 − pn+1
k ≥ 0.

Finally, the case when pnk−1 = max(pnk−1, p
n
k , p

n
k+1) can be proved by a symmetric

argument to that of the second case. �

Remark 3.5. Combining Lemma 3.2 and Lemma 3.3, we are able to identify a precise
value of Λ which guarantees stochastic monotonicity, as discussed just above the
proof of Proposition 2.1. In particular, if F 0

k and F̃ 0
k are two CDFs such that for

all k, F 0
k ≤ F̃ 0

k and

(3.5) 0 ≤ F 0
k − F 0

k−1 ≤ p∗ and 0 ≤ F̃ 0
k − F̃ 0

k−1 ≤ p∗ ,

then Lemma 3.2 guarantees that F 1
k ≤ F̃ 1

k , and Lemma 3.3 guarantees that F 1
k

and F̃ 1
k both satisfy (3.5). We may then conclude (by induction) that Fn

k ≤ F̃n
k

for all n ∈ N and k ∈ Z, so the ACM evolution is stochastically monotone for the
corresponding initial distributions μ and μ̃.

Now we are ready to prove Proposition 3.1. We will do so by relating the
process starting from a p∗-bounded initial condition to a sequence of processes
which begin from a discretization of a Lipschitz function. We will then be able to
use Proposition 2.1 for Lipschitz continuous initial data to yield convergence in this
extended setting.

Proof of Proposition 3.1. Fix ε > 0. Let (Xn, n ≥ 0) be ACM(m, q, r, μ)-distribut-
ed. Then the collection of values Fn

k = P(Xn < k) satisfy the recursive relationship
(2.1) with initial condition F 0

k = P(X0 < k) = μ(−∞, k). We note that the values
Fn
k also satisfy (2.15) when Δx and Δt are chosen so that (Δx)

m+1 = Δt. We
enforce this relation between Δx and Δt throughout the proof.

We will sandwich Fn
k between two solutions of (2.15) with smoother initial con-

ditions. To this end, define uε,1 as the lsc viscosity solution of{
uε,1
t + σ

∣∣uε,1
x

∣∣m+1
= 0 in R× (0,∞),

uε,1(x, 0) = ε�{x≤0} + �{x>0} in R,

and let u0,1−ε denote the lsc viscosity solution of{
u0,1−ε
t + σ

∣∣u0,1−ε
x

∣∣m+1
= 0 in R× (0,∞),

u0,1−ε(x, 0) = (1− ε)�{x>0} in R.

Setting

(3.6) S := S(ε) = (1− ε)m/(m+1)(m+ 1)σ1/(m+1)m−m/(m+1)ε1/(m+1),
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by (1.13), these solutions have the explicit forms

(3.7) uε,1(x, t) =

⎧⎪⎪⎨
⎪⎪⎩
ε if x ≤ 0,

ε+ m

σ
1
m (m+1)

m+1
m

(
xm+1

t

) 1
m

if 0 ≤ x ≤ S(ε)(t/ε)1/(m+1),

1 otherwise,

and

(3.8) u0,1−ε(x, t) =

⎧⎪⎪⎨
⎪⎪⎩
0 if x ≤ 0,

m

σ
1
m (m+1)

m+1
m

(
xm+1

t

) 1
m

if 0 ≤ x ≤ S(ε)(t/ε)1/(m+1),

1− ε otherwise.

In particular, uε,1(x, t) = u0,1−ε(x, t)+ε. We also see from (3.7) and (3.8) that both
uε,1(x, ε), u0,1−ε(x, ε) are Lipschitz continuous with the same Lipschitz constant
K = K(ε), and therefore, there exists an η = η(ε) sufficiently small such that if
Δx ≤ η, then

(3.9)

{
0 ≤ uε,1(x+Δx, ε)− uε,1(x, ε) ≤ p∗ for all x ∈ R,

0 ≤ u0,1−ε(x+Δx, ε)− u0,1−ε(x, ε) ≤ p∗ for all x ∈ R.

Also, by our explicit representation of uε,1 in (3.7), we have

(3.10)
uε,1(x, ε) ≥ ε for all x,

uε,1(x, ε) = 1 for all x ≥ S(ε).

Now, define

L := L(ε) = max{k ≤ 0 : F 0
k ≤ ε},

R := R(ε) = min{k ≥ 0 : F 0
k ≥ 1− ε}.

These values are both finite because μ is a probability distribution on Z and hence
limk→−∞ F 0

k = 0 and limk→∞ F 0
k = 1. Then, for ñ ∈ N, let F+,n

k (ñ) and F−,n
k (ñ)

be the schemes defined by (2.15), with (Δx)
m+1 = Δt as always, and with initial

conditions

(3.11) F+,0
k (ñ) = uε,1(kΔx − Lñ−1/(m+1) + S, ε)

and

(3.12) F−,0
k (ñ) = u0,1−ε(kΔx −Rñ−1/(m+1), ε),

respectively. We use the parameter ñ to spatially shift the initial conditions in
order to obtain ordered initial conditions.

By the definition of L, for k < L we have

F 0
k ≤ ε ≤ F+,0

k (ñ),

the second inequality holds because F+,0
k (ñ) ≥ ε for all k by (3.10). For k ≥ L, if

Δx ≤ ñ−1/(m+1) then since L ≤ 0 we have kΔx − Lñ−1/(m+1) + S ≥ S, so also by
(3.10),

F+,0
k (ñ) = uε,1(kΔx − Lñ−1/(m+1) + S, ε) = 1 ≥ F 0

k .

Therefore, if Δx ≤ ñ−1/(m+1) then F+,0
k (ñ) ≥ F 0

k for all k ∈ Z.
Similarly, by the definition of R and (3.8), for k > R, we have

F−,0
k (ñ) ≤ 1− ε ≤ F 0

k ,
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and if Δx ≤ ñ−1/(m+1), then for k ≤ R we have kΔx − Rñ−1/(m+1) ≤ 0, so by
(3.8),

F−,0
k (ñ) = 0 ≤ F 0

k .

Thus if Δx ≤ ñ−1/(m+1) then F−,0
k (ñ) ≤ F 0

k for all k ∈ Z.

Combining the two preceding paragraphs, we obtain that if Δx ≤ ñ−1/(m+1)

then for all k,
F−,0
k (ñ) ≤ F 0

k ≤ F+,0
k (ñ) .

If also Δx ≤ η, then by (3.9), each scheme satisfies the condition that∣∣∣F±,0
k (ñ)− F±,0

k−1(ñ)
∣∣∣ ≤ p∗

for all k ∈ Z. By Remark 3.5, the prior two displays yield that whenever Δx ≤
min(η, 1/ñ(m+1)), we have by induction that for all n ∈ N,

(3.13) F−,n
k (ñ) ≤ Fn

k ≤ F+,n
k (ñ).

We now combine these bounds with Proposition 2.1. We first aim to apply the
proposition with μN defined by

μN [−∞, k) = F+,0
k (ñ) .

The proposition requires that μN have the form μN [−∞, k) = u0(k/N
1/(m+1)), so

the definition of F+,0
k (ñ) forces us to take Δx = N−1/(m+1) and u0(x) = uε,1(x −

L/ñ1/(m+1) + S, ε). Since uε,1 is Lipschitz, fixing T > 1 and applying Proposition
2.1 (specifically (2.3)) at time t = 1 ∈ [0, T ], it follows that there exist N0 =
N0(q,m,K) and c = c(K,m, T ) such that if N ≥ N0, for all k ∈ Z,

F+,N
k (ñ) ≤ uε,1(kN−1/(m+1) − Lñ−1/(m+1) + S, 1 + ε) + cN−1/2.

We emphasize that N0 and c depend only on the initial condition u0(x) = uε,1(x−
L/ñ1/(m+1)+S, ε) through its Lipschitz constant K; in particular, N0 and c do not
depend on ñ since varying ñ translates the initial condition horizontally but does
not change its Lipschitz constant.

Similarly, taking Δx = N−1/(m+1) and u0(x) = u0,1−ε(x − R/ñ1/(m+1), ε) and
t = 1, applying Proposition 2.1 (specifically (2.3)) with μN defined by μN [−∞, k) =

F−,0
k (ñ) yields that for all N ≥ N0 and all k ∈ Z,

F−,N
k (ñ) ≥ u0,1−ε(kN−1/(m+1) −Rñ−1/(m+1), 1 + ε)− cN−1/2.

For N ≥ N0 large enough that also Δx = N−1/(m+1) ≤ min(η, ñ−1/(m+1)), we may
combine these bounds with (3.13) to deduce that for all k ∈ Z,

P(XN < k)=FN
k ≤F+,N

k (ñ)≤uε,1(kN−1/(m+1) −Lñ−1/(m+1) + S, 1+ ε) + cN−1/2

and

P(XN < k)=FN
k ≥F−,N

k (ñ)≥u0,1−ε(kN−1/(m+1) −Rñ−1/(m+1), 1 + ε)− cN−1/2.

Taking k = xN1/(m+1), these bounds become

P(XN < xN1/(m+1)) ≤ uε,1(x− Lñ−1/(m+1) + S, 1 + ε) + cN−1/2,

and
P(XN < xN1/(m+1)) ≥ u0,1−ε(x−Rñ−1/(m+1), 1 + ε)− cN−1/2.

We should in fact take k = �xN1/(m+1)� above, but we ignore this minor rounding
issue to preserve readability, as the errors it creates are asymptotically negligible
for N large due to the spatial continuity of uε,1 and of u0,1−ε at time 1 + ε.
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For ñ ≥ max(N0, η
−(m+1)), if N ≥ ñ then the other constraints on N are

automatically satisfied. Recalling that L ≤ 0, since cN−1/2 → 0 as N → ∞, the
first of the two preceding bounds then implies that

lim sup
N→∞

P

(
XN

N1/(m+1)
< x

)
≤ inf

ñ≥max(N0,η−(m+1))

(
uε,1(x− Lñ−1/(m+1) + S, 1 + ε)

)
= uε,1(x+ S, 1 + ε).

Likewise, the second of the bounds yields that

lim inf
N→∞

P

(
XN

N1/(m+1)
< x

)
≥ sup

ñ≥max(N0,η−(m+1))

(
u0,1−ε(x−Rñ−1/(m+1), 1 + ε)

)
= u0,1−ε(x, 1 + ε) .

Finally, from the explicit representations of uε,1, u0,1−ε from (3.7) and (3.8), and
S = S(ε) defined by (3.6), we have

lim
ε→0

S(ε) = 0

lim
ε→0

uε,1(x+ S(ε), 1 + ε) = u(x, 1)

lim
ε→0

u0,1−ε(x, 1 + ε) = u(x, 1),

uniformly in x, where u(x, t) is given by (1.14). Taking the limit as ε → 0, we get
that

u(x, 1) ≤ lim inf
n→∞

P

(
Xn

n1/(m+1)
< x

)
≤ lim sup

n→∞
P

(
Xn

n1/(m+1)
< x

)
≤ u(x, 1),

and therefore

lim
n→∞

P

(
Xn

n1/(m+1)
< x

)
= u(x, 1) ,

as desired. �

4. General singular initial conditions

We saw that Lemma 3.2 requires a bound on the maximum single-site probability.
Our next result shows that in fact, there exists a constant N such that, regardless
of the initial distribution, the distribution of the ACM after N steps will satisfy
such a bound.

Lemma 4.1. Let μ be a probability distribution supported on Z, and let (Xn, n ≥ 0)
be ACM(m, q, r, μ)-distributed. Then there exists a constant N = N(m, q, r), such
that for all n ≥ N ,

(4.1) max
k∈Z

P(Xn = k) ≤ p∗.

In the proof of Lemma 4.1, we want to use the fact that p∗ > 1/2 to bound
the decrease in the maximum away from 0. However, we must also consider the
case when p∗ = 1/2, which occurs when m = q = 1. As such, the ACM(1, 1, r, μ)-
distributed processes will be addressed in a slightly different way.
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Proof of Lemma 4.1. We know by Lemma 3.3 that if M := maxk∈Z p
0
k ≤ p∗, then

maxk∈Z p
n
k ≤ p∗ for all n. So suppose there exists an 
 ∈ Z such that M = P (X0 =


) > p∗. We will show that

(4.2) max
k∈Z

P(X1 = k) ≤ max(p∗,M − C)

for some C = C(m, q, r) > 0. The full result will then follow by induction, as this
implies that for all n ∈ N,

max
k∈Z

pnk ≤ max(p∗,M − nC),

and in particular maxk∈Z p
n
k ≤ p∗ for all n ≥ (1− p∗)/C.

We know that because p∗ ≥ 1/2, there exists a unique 
 such that p0� > p∗.
First suppose that p∗ > 1/2. We consider each site k ∈ Z and show that either

p1k ≤ p∗ or M − p1k = p0� − p1k ≥ C.

• When k �∈ {
− 1, 
, 
+ 1}, then by Lemma 3.3 we have

p1k ≤ max(p0k−1, p
0
k, p

0
k+1) ≤ p∗.

• For the value p1� , we have

p0� − p1� = −q
[
r(p0�−1)

m+1 − (p0�)
m+1 + (1− r)(p0�+1)

m+1
]

≥ −q
[
r(1/2)m+1 − (p∗)m+1 + (1− r)(1/2)m+1

]
= q

[
(p∗)m+1 − (1/2)m+1

]
=: C1 > 0.

• For site 
+ 1, we have a similar computation:

p0� − p1�+1 = p0� −
[
p0�+1 + qr(p0�)

m+1 − q(p0�+1)
m+1 + (1− r)q(p0�+2)

m+1]

= p0� −
[
p0�+1 + qr(p0�)

m+1 − q(p0�+1)
m+1 + (1− r)q(p0�+2)

m+1]

− (1− r)q(p0�)
m+1 + (1− r)q(p0�)

m+1

=
[
p0� − q(p0�)

m+1]− [
p0�+1 − q(p0�+1)

m+1]+ (1− r)q
[
(p0�)

m+1 − (p0�+2)
m+1]

= g(p0� , p
0
�+1) + (1− r)q

[
(p0�)

m+1 − (p0�+2)
m+1]

≥ min(g(p∗, 1− p∗), 1− q) + (1− r)q
[
(p∗)m+1 − (1/2)m+1]

=: C2,

where the inequality is obtained by Lemma 3.4. Now notice that each term
in C2 is non-negative. If q < 1, the first term is strictly positive and if
q = 1, then r �= 1, so the second term is strictly positive. Therefore C2 > 0.

• We also bound p0� − p1�−1 with a similar computation.

p0� − p1�−1 = p0� −
[
p0�−1 + qr(p0�−2)

m+1 − q(p0�−1)
m+1 + (1− r)q(p0�)

m+1
]

= p0� −
[
p0�−1 + qr(p0�−2)

m+1 − q(p0�−1)
m+1 + (1− r)q(p0�)

m+1
]

− qr(p0�)
m+1 + qr(p0�)

m+1

=
[
p0� − q(p0�)

m+1
]
−
[
p0�−1 − q(p0�−1)

m+1
]
+ qr

[
(p0�)

m+1 − (p0�−2)
m+1

]
≥ min(g(p∗, 1− p∗), 1− q) + qr

[
(p∗)m+1 − (1/2)m+1

]
=: C3.

Again, because min(g(p∗, 1− p∗), 1− q) ≥ 0 and the second term in C3

is strictly positive, we can see that C3 > 0.
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Therefore, if we let C := min(C1, C2, C3) > 0, we have shown that if p∗ > 1/2

max
k∈Z

P(X1 = k) ≤ max(p∗,M − C)

as desired.
We now address the case when p∗ = 1/2, so m = q = 1. Again, Lemma 3.3 tells

us that for k �∈ {
 − 1, 
, 
 + 1}, p1k ≤ p∗. For k ∈ {
 − 1, 
, 
 + 1} we again bound
p0� −p1k from below, but the bounds used above are too loose. So we use the method
of Lagrange multipliers to get a better bound. The details are routine but tedious
so we only sketch them. In three separate calculations, we minimize the function of
interest subject to the constraints that the sum of the three sites must be less than
1, that 1/2 ≤ p0� ≤ 1, and that all sites have a non-negative mass. The functions
we choose to minimize will be

p0� − p1� = −r(p0�−1)
2 + (p0�)

2 − (1− r)(p0�+1)
2,

p0� − p1�−1 = p0� − p0�−1 − r(p0�−2)
2 + (p0�−1)

2 − (1− r)(p0�)
2,

p0� − p1�+1 = p0� − p0�+1 − r(p0�)
2 + (p0�+1)

2 − (1− r)(p0�+2)
2.

Leaving the details to the reader, we see that each of these functions is minimized
at a corner point of the corresponding constraint region. This yields the following
lower bound:

min(p0� − p1� , p
0
� − p1�−1, p

0
� − p1�+1) ≥ min

(
1− r

4
,
r

4
,
1− r

4

)
=

1− r

4
.

Because q = 1 in this case, we know r �= 1 and therefore in this case C := 1/4−r/4 >
0. With this constant, the result again follows by induction. �

We now have everything needed to prove the main theorem.

Proof of Theorem 1.1. Fix N = N(q,m, r) as in Lemma 4.1, let μ̃ be the distribu-

tion of XN and let X̃n = XN+n for n ≥ 0. Then (X̃n, n ≥ 0) is ACM(m, q, r, μ̃)-

distributed. Because P(X̃0 = k) ≤ p∗ for all k, we can apply Proposition 3.1 to
conclude that

lim
n→∞

P

(
X̃n

n1/(m+1)
< x

)
= u(x, 1).

Since N is fixed and u(x, 1) is continuous, this implies that for all x ∈ R,
(4.3)

lim
n→∞

P

(
Xn

n1/(m+1)
< x

)
= lim

n→∞
P

(
X̃n

n1/(m+1)
< x

(n−N

n

)1/(m+1)
)

= u(x, 1).

By comparing the expression for u(x, 1) provided by (1.14) to the CDF given in

(1.4) for (m+ 1)
(

σ
mm

)1/m+1
B, where B is Beta(m+1

m , 1)-distributed, we see that

1

m+ 1

(
mm

σ

) 1
m+1

· Xn

n1/(m+1)

d−→ B,

as required. �

Remark 4.2. When 0 ≤ r < 1/2, we have σ < 0, and the PDE arguments above
don’t apply directly, as H(p) = σ|p|m+1 is no longer convex. However, we can prove
the result for r in this range as follows.
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Let (Xn, n ≥ 0) be ACM(m, q, r, μ)-distributed with r < 1/2. Define (Yn, n ≥ 0)
with Yn := −Xn for all n. Then (Yn, n ≥ 0) is ACM(m, q, 1 − r,−μ)-distributed,
where we take the convention that −μ(x) := μ(−x). Because 1 − r > 1/2, the
arguments above show that

1

m+ 1

(
mm

(2(1− r)− 1)q

) 1
m+1

· Yn

n1/(m+1)

d−→ B,

where B is Beta
(
m+1
m , 1

)
-distributed.

Noting that Yn = −Xn, we simplify and plug in to see that this is equivalent to
the statement

1

m+ 1

(
mm

−(2r − 1)q

) 1
m+1

· −Xn

n1/(m+1)

d−→ B.

Now, recalling that σ = (2r − 1)q < 0 when r < 1/2, we see that this can be
rewritten as

sign(σ)

m+ 1

(
mm

|σ|

) 1
m+1

· Xn

n1/(m+1)

d−→ B.

This is precisely the result in Theorem 1.1.

5. Generalizations, limitations, and open questions

In this section, we discuss several possible extensions to the above results, as
well as some obstacles and challenges we have observed.

1. Higher dimensions. One may try to extend our results and techniques to higher
space-dimensions. However, there are several challenges. In particular, we use the
monotonicity of CDFs, namely that Fn

k is nondecreasing in k, liberally throughout
the paper. The monotonicity of CDFs in higher dimensions is weaker, as it requires
ordering in all coordinates. Moreover, the natural recurrence for the CDF in higher
dimensions requires information about the values of the CDF along the boundary
of a quadrant (since such a CDF encodes the probability that a random variable
lies in a quadrant). Thus, such a recurrence is highly non-local and, as such, does
not seem amenable to PDE tools we use in this paper. Relatedly, it is unclear how
to extend the stochastic monotonicity and sandwiching arguments from this paper
to higher dimensions. These points make the extension of our results to dimensions
d > 1 delicate (although we hope not impossible).

2. Connection to zero-range processes. The following interacting particle system is,
heuristically, a relative of cooperative motion. Begin with L particles at the origin
0 ∈ Z. For each time n ∈ N, choose m + 1 particles independently and uniformly
at random. If all m + 1 particles are at the same location, then one of the m + 1
particles makes a biased lazy random walk step (1 with probability rq, −1 with
probability (1− r)q, otherwise 0). If the m+ 1 particles are spread among at least
two sites then no motion occurs. Up to a time change, this process is equivalent
to a zero-range process on Z, where the rate of motion off a site with k particles is
r(k) = km+1.
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Write Pn
k for the proportion of the L particles on site k at time n. Then a simple

one-step calculation using the tower law gives that

E(Pn+1
k − Pn

k ) =
1

L
E
(
−rq

(
(Pn

k )
m+1 − (Pn

k−1)
m+1

)
+(1− r)q

(
(Pn

k+1)
m+1 − (Pn

k )
m+1

))
.

If the random variables Pn
k are well-concentrated around their expectations, then

this suggests that, after a time change, the empirical particle density Pn
k should

evolve like the solution of (1.15). Results of this form—hydrodynamic limits for the
empirical particle density of zero-range processes—are known in some cases ([10]
presents results of this kind, and [12] analyzes a related, Rd-valued model), but
we were unable to find any existing results which apply to dynamics which are as
singular as those described above.

3. Cooperative motion with fewer than m friends. A related model which we have
not considered, but which may be amenable to the techniques of this paper, is
when the cooperative motion only requires 
 individuals to move, for 
 < m. More
precisely, we may modify the model as follows. Let X0 and (Dn, n ≥ 0) be as in

the introduction. Then, for n ≥ 0, let (X̃i
n, 1 ≤ i ≤ m) be independent copies of

Xn, and set

Xn+1 =

{
Xn +Dn if Xn = X̃i

n for at least 
 distinct values i ∈ {1 . . .m},
Xn otherwise .

It seems likely that for such a process, Xn should typically take values of order
n1/(�+1). A heuristic argument for this is as follows. Suppose that Xn/n

α behaves
roughly like a continuous random variable with compact support, for n large; say
that P(Xn = k) 
 n−1/α for Θ(nα) distinct values of k, and for other values of k
this probability is substantially smaller.

On one hand, this suggests that P(Xn+1 > Xn) = Θ(nα−1), since we expect that
X2n −Xn = Θ(nα). On the other hand, P(Xn+1 > Xn) is the probability that at

least 
 of the m copies of X̃i
n take the same value as Xn; if the distribution of Xn

is spread out over roughly nα sites, then this probability should be around (n−α)�.
For these two predictions to agree we must have 1− α = α
, so α = 1/(
+ 1).

While we have confidence in this prediction of the asymptotic size of Xn, it is
not clear to us whether or not the scaling limit should in fact be the same as for a
ACM(
, q, r, μ) process.

4. Cooperative motion with a non-integer number of friends. Another possible
extension is to the case when m is non-integer. Although m integer has a natural
interpretation in terms of cooperative motion, which in turn leads to the recursion
relation (1.5), we may alternatively take (1.5) as a definition for the CDF Fn

k of a
random variable Xn. In this case, the same analysis shows that for any m ∈ R with
m ≥ 1, Theorem 1.1 still holds when X0 is μ-distributed and P(Xn < k) = Fn

k ,
where Fn

k is defined according to (1.5).
The requirement that m ≥ 1 is crucial for Lemma 3.4, so the techniques of this

paper do not yield insight into what happens for m ∈ (0, 1). However, it would be
quite interesting to understand this, as well as the limiting behaviour as m → 0.
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5. General step size distributions. Remaining in one spatial dimension, another
natural generalization of this process would be to consider cooperative motion which
allowed for more general step sizesDn. As we will discuss in Section 5.2, it turns out
that if P(|Dn| > 1) > 0, we confront an immediate, provable obstacle to directly
applying the proof techniques of this paper (failure of monotonicity). However,
before describing this obstacle, we first present a generalization of our main result.
If the steps (Dn, n ≥ 0) take on the values +R, 0,−R for some integer R, instead
of +1, 0,−1, then we are able to prove a distributional convergence result; this is
presented in the next subsection. Surprisingly, the limiting distribution in this case,
although always a mixture of Beta random variables, need not be Beta-distributed,
due to lattice effects which persist at large times.

5.1. Persistent lattice effects. Let (Dn, n ≥ 0) be iid bounded integer random
variables. Define a cooperative motion process, with X0 chosen according to an
initial probability distribution μ on Z, as follows. For n ≥ 0, let (X̃i

n, 1 ≤ i ≤ m)
be independent copies of Xn, and set

(5.1) Xn+1 =

{
Xn +Dn if Xn = X̃i

n for all i = 1, . . . ,m,

Xn if Xn �= X̃i
n for some i .

In this section we consider the case where the steps (Dn, n ≥ 0) are iid with
P(Dn = R) = rq, P(Dn = 0) = 1 − q, and P(Dn = −R) = (1 − r)q for some
0 < q ≤ 1, 1

2 < r ≤ 1 with r and q not both 1, and R ∈ N. If the initial distribution
μ is supported by a translate of RZ then the resulting cooperative motion may
simply be seen as a rescaling of the Bernoulli cooperative motion process considered
in the body of the paper. However, if μ is not supported by a translate of RZ then
the asymptotic behaviour is in fact different; there are lattice effects which persist
at large times.

Theorem 5.1. Consider the generalized cooperative motion with P(Dn = R) = rq,
P(Dn = 0) = 1 − q, and P(Dn = −R) = (1 − r)q for some 0 < 1 ≤ 1, 1

2 < r ≤ 1
with r and q not both 1, and R ∈ N. Write πr = P(X0 = r mod R) for r ∈
{1, 2, . . . , R}. Then

1

R(m+ 1)

(
mm

σn

)1/(m+1)

Xn
d−→ B ·

R∑
r=1

(πr)
m/(m+1)1{A=r},

where A is a random variable taking values in {1, 2, . . . , R} with P(A = r) = πr,
and B is Beta(m+1

m , 1)-distributed and independent of A.

As an input to the proof of Theorem 5.1, we use the following straightforward
extension of Theorem 1.1 to Bernoulli cooperative motions which may take values
±∞. Let c = c(q,m, r) = mσ−1/m(m + 1)−(m+1)/m, and for 0 ≤ a < b ≤ 1 define
an extended CDF F a,b by

F a,b(x) =

⎧⎪⎨
⎪⎩
a if x ≤ 0,

a+ cx(m+1)/m if 0 ≤ cx(m+1)/m ≤ b− a,

b if b− a ≤ cx(m+1)/m .
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Let Ba,b be an extended random variable with distribution F a,b. Then P(|Ba,b| <
∞) = b− a, and for x ∈ R,

P(Ba,b ≤ x | |Ba,b| < ∞) =

⎧⎪⎨
⎪⎩
0 if x ≤ 0,
c

b−ax
(m+1)/m if 0 ≤ c

b−ax
(m+1)/m ≤ 1,

1 if 1 ≤ c
b−ax

(m+1)/m .

In other words, given that |Ba,b| is finite, it is distributed as ( b−a
c )m/(m+1)B where

B is Beta(m+1
m , 1)-distributed

Proposition 5.2. If μ is a probability distribution on Z∪{±∞} with μ({−∞}) = a
and μ({+∞}) = 1− b, and (Xn, n ≥ 0) is ACM(m, q, r, μ)-distributed, then

Xn

n1/(m+1)

d−→ Ba,b.

The proof of Proposition 5.2 proceeds exactly as does the proof of Theorem 1.1,
with minor notational changes, so we omit the details.

Corollary 5.3. Suppose that μ is a probability distribution on Z ∪ {±∞} with
μ({−∞}) = a and μ({+∞}) = 1−b, and that P(Dn = R) = rq, P(Dn = 0) = 1−q,
and P(Dn = −R) = (1 − r)q for some q ∈ (0, 1), r ∈ (1/2, 1] with r and q not
both 1, and R ∈ N, R > 0. If there is r ∈ {1, 2, . . . , R} such that P(|X0| = r
mod R | |X0| < ∞) = 1, then

1

R
· Xn

n1/(m+1)

d−→ Ba,b.

Proof. Apply Proposition 5.2 to the process ((Xn − r)/R, n ≥ 0). �

Proof of Theorem 5.1. Define auxiliary processes (X
(r)
n , n ≥ 0) for 1 ≤ r ≤ R by

X(r)
n =

{
Xn if Xn = r mod R

−∞ otherwise.

Then by Corollary 5.3, for each 1 ≤ r ≤ R,

1

R
· X

(r)
n

n1/(m+1)

d−→ B1−πr,1.

Moreover, since exactly one of X
(1)
n , . . . , X

(R)
n is finite, and P(|X(r)

n | < ∞) = π(r)

for all n ≥ 0 and 1 ≤ r ≤ R, it follows that(
1

R
· X

(r)
n

n1/(m+1)
, 1 ≤ r ≤ R

)
d−→ (B1−πr,1, 1 ≤ r ≤ R),

where the joint distribution of the variables on the right-hand side is fully deter-
mined by the stipulation that exactly one of them is finite and all others take the
value −∞.

Finally, with the convention that (−∞) · 0 = 0, we have

Xn =

R∑
r=1

X(r)
n 1{

|X(r)
n |<∞

},
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together with which the preceding joint convergence implies that

1

R

Xn

n1/(m+1)

d−→
R∑

r=1

B1−πr,11{|B1−πr,1|<∞} .

Since P(|B1−πr,1| < ∞) = 1 − (1 − πr) = πr for each r ∈ {1, 2, . . . , R}, and the
conditional distribution of B1−πr,1 given that |B1−πr,1| is finite is the same as that
of (πr/c)

m/(m+1)Beta(m+1
m , 1), the result follows. �

5.2. Step sizes |Dn| > 1. Building on our main theorem, and in view of the per-
sistent lattice effects explained in the preceding subsection, we make the following
conjecture. Consider the generalized cooperative motion defined by (5.1) and write
ν for the common distribution of (Dn, n ≥ 0). If gcd(k > 0 : P(|Dn| = k) > 0) = 1

and E[Dn] �= 0, then there exists c = c(ν) > 0 such that cn−1/(m+1)Xn
d−→ B,

where B is Beta
(
m+1
m , 1

)
-distributed.

The preceding conjecture states that all totally asymmetric cooperative mo-
tion processes with non-negative, bounded integer step sizes whose support is not
contained in a proper sublattice of Z should have similar asymptotic behaviour.
However, there is a provable difficulty in establishing this conjecture beyond the
setting described in this paper using the proof techniques shown above. Specif-
ically, we next show that monotonicity of the evolution fails to hold whenever
P(|Dn| > 1) > 0. This implies that, in some sense, the main proof technique used
in this paper can only handle cooperative motion-type processes with |Dn| ≤ 1.

Consider a cooperation-type process as in (5.1), with bounded but not necessarily
positive step sizes, so P(−
 ≤ Dn ≤ s) = 1 for some non-negative integers s and 
.
Writing Fn

k = P(Xn < k), then the values Fn
k satisfy the following recurrence:

Fn+1
k = G(Fn

k+�, . . . , F
n
k , . . . , F

n
k−s)

:= Fn
k −

k−1∑
j=k−s

P(Xn = j)m+1P(Dn ≥ k − j)

+
k+�−1∑
j=k

P(Xn = j)m+1P(Dn < k − j)

= Fn
k −

k−1∑
j=k−s

(Fn
j+1 − Fn

j )
m+1P(Dn ≥ k − j)

+

k+�−1∑
j=k

(Fn
j+1 − Fn

j )
m+1P(Dn < k − j).

The function G is defined by the equality of the first and third lines, above: so

G(fk+�, . . . , fk−s)

= fk −
k−1∑

j=k−s

(fj+1 − fj)
m+1P(Dn ≥ k − j)

+

k+�−1∑
j=k

(fj+1 − fj)
m+1P(Dn < k − j) .
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Theorem 5.4. If P(|Dn| > 1) > 0, then there is no Λ > 0 such that G is nonde-
creasing in each argument whenever

0 ≤ fj+1 − fj ≤ Λ

for all j ∈ [k − s, k + 
− 1].

Proof. First,

∂G

∂fk−1
= (m+ 1)(fk − fk−1)

mP(Dn ≥ k − (k − 1))

− (m+ 1)(fk−1 − fk−2)
mP(Dn ≥ k − (k − 2))

= (m+ 1)(fk − fk−1)
mP(Dn ≥ 1)− (m+ 1)(fk−1 − fk−2)

mP(Dn ≥ 2),

so if P(Dn ≥ 2) > 0 and if fk = fk−1 > fk−2, then

∂G

∂fk−1
< 0.

Similarly,

∂G

∂fk+1
= (m+ 1)(fk+1 − fk)

mP(Dn < 0)− (m+ 1)(fk+2 − fk+1)
mP(Dn < −1),

so if P(Dn < −1) > 0, then whenever fk = fk+1 < fk+2 then we have

∂G

∂fk+1
< 0. �

Note that for any initial distribution with bounded support, if the step size is
bounded then for all n the support of Xn is bounded: letting k = max{
 : Fn

� <
1} + 2 and k′ = min{
 : Fn

� > 0} − 2, then k and k′ are both finite. Moreover,
Fn
k−2 < Fn

k−1 = Fn
k = 1 and 0 = Fn

k′ = Fn
k′+1 < Fn

k′+2, and thus if P(|Dn| > 1) > 0
then by the above theorem, at no point in the evolution will the process reach
a time at which monotonicity can be invoked. Without monotonicity, we cannot
apply the Crandall-Lions methodology, so the proof technique used in this paper
fails.

Appendix A. An introduction to viscosity solutions

In this section, we provide a self-contained description of Crandall-Lions (con-
tinuous) and Barron-Jensen (lsc) viscosity solutions. The results of this section are
classical and can be found in various references such as [2, 3, 6, 11].

We will work throughout this section with the model equation

(A.1) ut +H(ux) = 0,

where H : R → R. We also define the Cauchy problem, given by

(A.2)

{
ut +H(ux) = 0 in R× (0,∞),

u(x, 0) = u0(x) in R.

We begin with the theory of continuous viscosity solutions.

Definition A.1. Let u : R× (0,∞) → R. We say that u is a viscosity subsolution
of (A.1) at (x0, t0) if u is upper semicontinuous at (x0, t0), and for any function
ϕ ∈ C1(R× (0,∞)) such that u− ϕ has a local maximum at (x0, t0), we have

ϕt(x0, t0) +H(ϕx(x0, t0)) ≤ 0.
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We say that u is a viscosity supersolution of (A.1) at (x0, t0) if u is lower semicon-
tinuous at (x0, t0), and for any function ϕ ∈ C1(R× (0,∞)) such that u− ϕ has a
local minimum at (x0, t0), we have

ϕt(x0, t0) +H(ϕx(x0, t0)) ≥ 0.

Finally, we say that u is a viscosity solution of (A.2) if and only if u is both a
viscosity subsolution and supersolution of (A.1) for all (x0, t0) ∈ R × (0,∞) and,
additionally, for all x ∈ R, u(y, t) → u0(x) as (y, t) → (x, 0). As u is then both
upper and lower semicontinuous on R× (0,∞), u is necessarily continuous.

One can also interpret the definition of viscosity solutions from a geometric
perspective. The condition that u − ϕ has a local max/min at (x0, t0) can always
be replaced by the function ϕ touching u at the point (x0, t0) from above/below.
Indeed, when u−ϕ has a local max at (x0, t0), we may adjust ϕ (adding appropriate
constants and strictly convex/concave functions) to obtain ϕ̃ such that

u < ϕ̃ in R× (0,∞), except at (x0, t0) where u(x0, t0) = ϕ̃(x0, t0).

If u is differentiable at (x0, t0) and satisfies (A.1) at (x0, t0), then u automatically
satisfies (A.1) in the viscosity sense at (x0, t0). The notion of viscosity solution en-
tails that if u is not differentiable at (x0, t0), one uses a smooth test function which
“touches” u at the point (x0, t0) on either side to evaluate the PDE at (x0, t0).
Compared to other notions of weak solutions of PDEs (for example, distributional
solutions which are based on integration by parts), viscosity solutions are par-
ticularly amenable to nonlinear PDEs. We now recall the basic existence and
uniqueness result for continuous viscosity solutions which we will use throughout
the paper:

Theorem A.2 ([7, Theorem VI.2]). Consider (A.2) with H continuous and u0

bounded and uniformly continuous. There exists a unique continuous viscosity so-
lution u of (A.2). Moreover,

|u(x, t)− u(y, t)| ≤ sup
ζ∈R

|u0(ζ) + u0(ζ + y − x)| for x, y ∈ R, t ≥ 0.

It is well known (see for example [9, 10.3, Theorem 3]) that when H(p) is convex
and lim|p|→∞ H(p)/|p| = +∞, the unique continuous viscosity solution is given by
the Hopf-Lax Formula

u(x, t) = inf
y∈R

{
u0(y) + tH∗

(
x− y

t

)}
.

The crown jewel of continuous viscosity solutions theory is the celebrated com-
parison principle, which is an extremely useful tool for analysis:

Theorem A.3 ([6, Theorem 8.2]). Consider (A.2) with H continuous. If u is
a subsolution of (A.1) and v is a supersolution of (A.1), and u(x, 0) = u0(x) ≤
v0(x) = v(x, 0) with u0, v0 bounded and uniformly continuous, then u(x, t) ≤ v(x, t)
for all t > 0.

Using the Comparison Principle (Theorem A.3), we can show that u solving
(A.2) satisfies additional regularity estimates:
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Proposition A.4. Let u denote the unique continuous viscosity solution of (A.2)
with u0 bounded and Lipschitz continuous with Lipschitz constant K > 0. Then
there exists C > 0 such that for all (x, t) ∈ R× (0,∞),{

|ut(x, t)| ≤ C,

|ux(x, t)| ≤ K.

Proof. The fact that |ux| ≤ K in all of R × (0,∞) is automatic by Theorem A.2.
We now show that ut is uniformly bounded. In order to do so, we note that for
C := sup|p|≤K H(p),

v(x, t) := u0(x) + Ct and w(x, t) := u0(x)− Ct

are both super and subsolutions of (A.2) respectively. Therefore, the Comparison
Principle (Theorem A.3) yields

u0(x)− Ct ≤ u(x, t) ≤ u0(x) + Ct,

which implies that

(A.3) sup
t>0

∣∣∣∣u(x, t)− u0(x)

t

∣∣∣∣ ≤ C,

for all x ∈ R. Now, for any s > 0, considering the function us(x, t) := u(x, t + s),
we have that

us(x, 0)− ||u(x, 0)− us(x, 0)||L∞ ≤ u(x, 0) ≤ us(x, 0) + ||u(x, 0)− us(x, 0)||L∞ .

Another application of the Comparison Principle (Theorem A.3) implies that

us(x, t)− ||u(x, 0)− us(x, 0)||L∞ ≤ u(x, t) ≤ us(x, t) + ||u(x, 0)− us(x, 0)||L∞ ,

so that by (A.3),

|u(x, t+ s)− u(x, t)| ≤ ||u(x, 0)− us(x, 0)||L∞ ≤ Cs.

This implies that |ut| ≤ C for all (x, t) ∈ R× (0,∞). �

We now introduce the notion of Barron-Jensen or lower semicontinuous viscosity
solutions, which is only defined when H is a convex function.

Definition A.5. A lower semicontinuous function u : R × (0,∞) → R is an lsc
viscosity solution of (A.1) at (x0, t0) if for every ϕ ∈ C1(R×(0,∞)) such that u−ϕ
has a local minimum at (x0, t0), we have that

ϕt(x0, t0) +H(ϕx(x0, t0)) = 0.

We say that u is a lsc solution of (A.2) if u is a lsc viscosity solution for all (x0, t0) ∈
R× (0,∞) and

inf
{
lim inf
n→∞

u(xn, tn) | tn → 0, xn → x
}
= u0(x).

In the case when u is continuous, we have an equivalence between the two defi-
nitions:

Theorem A.6 ([3, Theorem 16]). Assume H is convex. A continuous function is
a viscosity solution of (A.1) if and only if it is a lsc viscosity solution (A.1).
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Finally, we recall that in the case when H is convex, a natural candidate for a
solution (from the point of view of optimal control) is the solution given by the
Hopf-Lax formula. In the cases when u0 is lower semicontinuous and bounded
below, the Hopf-Lax formula gives rise to the unique lsc viscosity solution.

Theorem A.7 ([2, Theorem 5.2]). Let u0 : R → R be lsc with

u0(x) ≥ −C(|x|+ 1).

Let H : R → R be convex and Lipschitz. Then

u(x, t) = inf
y∈R

{
u0(y) + tH∗

(
x− y

t

)}

is the unique lsc viscosity solution of (A.2) bounded from below by a function of
linear growth.
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[12] Karl Oelschläger, Large systems of interacting particles and the porous medium equation,
J. Differential Equations 88 (1990), no. 2, 294–346, DOI 10.1016/0022-0396(90)90101-T.
MR1081251

Licensed to Utah St Univ. Prepared on Thu Aug 11 18:22:53 EDT 2022 for download from IP 129.123.135.2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://www.ams.org/mathscinet-getitem?mr=4146542
https://www.ams.org/mathscinet-getitem?mr=1736971
https://www.ams.org/mathscinet-getitem?mr=1695005
https://www.ams.org/mathscinet-getitem?mr=1080619
https://www.ams.org/mathscinet-getitem?mr=1951317
https://www.ams.org/mathscinet-getitem?mr=1118699
https://www.ams.org/mathscinet-getitem?mr=690039
https://www.ams.org/mathscinet-getitem?mr=744921
https://www.ams.org/mathscinet-getitem?mr=2597943
https://www.ams.org/mathscinet-getitem?mr=1707314
https://www.ams.org/mathscinet-getitem?mr=667669
https://www.ams.org/mathscinet-getitem?mr=1081251


ASYMMETRIC COOPERATIVE MOTION IN ONE DIMENSION 2913

Department of Mathematics and Statistics, McGill University, Montreal, Quebec,

Canada

Email address: louigi.addario@mcgill.ca

Department of Mathematics and Statistics, McGill University, Montreal, Quebec,

Canada

Email address: erin.beckman@mcgill.ca

Department of Mathematics and Statistics, McGill University, Montreal, Quebec,

Canada

Email address: jessica.lin@mcgill.ca

Licensed to Utah St Univ. Prepared on Thu Aug 11 18:22:53 EDT 2022 for download from IP 129.123.135.2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


	1. Introduction
	1.1. Description of the model and the main result
	1.2. Proof technique
	1.3. Notation

	2. Finite difference schemes for diffuse initial conditions
	3. 𝑝*-bounded singular initial conditions
	4. General singular initial conditions
	5. Generalizations, limitations, and open questions
	5.1. Persistent lattice effects
	5.2. Step sizes |𝐷_{𝑛}|>1

	Appendix A. An introduction to viscosity solutions
	Acknowledgments
	References

